Here is the complete ML Aggarwal Class 12 Solutions of Exercise – 5.8 for Chapter 5 – Continuity and Differentiability. Each question is solved step by step for better understanding.
Question:
1. (i) Find \(\frac{dy}{dx}\) for \(x – y = \pi\).
Solution:
Differentiating both sides of the equation
\[
x – y = \pi
\]
with respect to \(x\), we get
\[
\frac{d}{dx}(x) – \frac{d}{dx}(y) = \frac{d}{dx}(\pi).
\]
Since \(\frac{d}{dx}(x) = 1\), \(\frac{d}{dx}(y) = \frac{dy}{dx}\) and the derivative of a constant is zero, this becomes
\[
1 – \frac{dy}{dx} = 0.
\]
Solving for \(\frac{dy}{dx}\),
\[
\frac{dy}{dx} = 1.
\]
Final Answer:
\(\frac{dy}{dx} = 1\).
Question:
1. (ii) Find \(\frac{dy}{dx}\) for \(x^2+y^2=25\).
Solution:
Differentiating both sides of
\[
x^2 + y^2 = 25
\]
with respect to \(x\), we obtain
\[
2x + 2y\frac{dy}{dx} = 0.
\]
Solving for \(\frac{dy}{dx}\), we have
\[
2y\frac{dy}{dx} = -2x \quad \Longrightarrow \quad \frac{dy}{dx} = -\frac{2x}{2y} = -\frac{x}{y}.
\]
Final Answer:
\(\frac{dy}{dx} = -\frac{x}{y}\).
Question:
2. (i) Find \(\frac{dy}{dx}\) for \(xy=c^2\).
Solution:
Differentiating both sides of
\[
xy = c^2
\]
with respect to \(x\), we use the product rule on the left-hand side:
\[
\frac{d}{dx}(xy) = y + x\frac{dy}{dx}.
\]
Since \(c^2\) is a constant, its derivative is zero:
\[
y + x\frac{dy}{dx} = 0.
\]
Solving for \(\frac{dy}{dx}\), we subtract \(y\) from both sides:
\[
x\frac{dy}{dx} = -y,
\]
and then divide both sides by \(x\):
\[
\frac{dy}{dx} = -\frac{y}{x}.
\]
Final Answer:
\(\frac{dy}{dx} = -\frac{y}{x}\).
Question:
2. (ii) Find \(\frac{dy}{dx}\) for \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=2016\).
Solution:
Differentiating both sides of
\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2016
\]
with respect to \(x\), we get:
\[
\frac{2x}{a^2} + \frac{2y}{b^2}\frac{dy}{dx} = 0.
\]
Isolating \(\frac{dy}{dx}\), we have:
\[
\frac{2y}{b^2}\frac{dy}{dx} = -\frac{2x}{a^2},
\]
and dividing both sides by \(\frac{2y}{b^2}\) yields:
\[
\frac{dy}{dx} = -\frac{2x}{a^2} \cdot \frac{b^2}{2y} = -\frac{b^2 x}{a^2 y}.
\]
Final Answer:
\(\frac{dy}{dx} = -\frac{b^2 x}{a^2 y}\).
Question:
3. (i) Find \(\frac{dy}{dx}\) for \(\sqrt{x}+\sqrt{y}=\sqrt{c}\).
Solution:
Differentiating both sides of
\[
\sqrt{x} + \sqrt{y} = \sqrt{c}
\]
with respect to \(x\) gives
\[
\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \frac{dy}{dx} = 0.
\]
Multiplying through by \(2\) to simplify, we have
\[
\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{y}} \frac{dy}{dx} = 0.
\]
Isolating \(\frac{dy}{dx}\), we obtain
\[
\frac{1}{\sqrt{y}} \frac{dy}{dx} = -\frac{1}{\sqrt{x}},
\]
and then multiplying both sides by \(\sqrt{y}\) yields
\[
\frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}.
\]
Final Answer:
\(\frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}\).
Question:
3. (ii) Find \(\frac{dy}{dx}\) for \(x^3 + x^2y + xy^2 + y^3 = 81\).
Solution:
Differentiate both sides of
\[
x^3 + x^2y + xy^2 + y^3 = 81
\]
with respect to \(x\). Differentiating term by term:
\[
\begin{aligned}
\frac{d}{dx}(x^3) &= 3x^2, \\
\frac{d}{dx}(x^2y) &= 2xy + x^2\frac{dy}{dx}, \quad \text{(using the product rule)}\\
\frac{d}{dx}(xy^2) &= y^2 + 2xy\frac{dy}{dx}, \quad \text{(using the product rule)}\\
\frac{d}{dx}(y^3) &= 3y^2\frac{dy}{dx}.
\end{aligned}
\]
Combining these, we have:
\[
3x^2 + 2xy + x^2\frac{dy}{dx} + y^2 + 2xy\frac{dy}{dx} + 3y^2\frac{dy}{dx} = 0.
\]
Grouping the terms containing \(\frac{dy}{dx}\) together:
\[
3x^2 + 2xy + y^2 + \left(x^2 + 2xy + 3y^2\right)\frac{dy}{dx} = 0.
\]
Isolating \(\frac{dy}{dx}\), we get:
\[
\left(x^2 + 2xy + 3y^2\right)\frac{dy}{dx} = -\left(3x^2 + 2xy + y^2\right),
\]
and hence,
\[
\frac{dy}{dx} = -\frac{3x^2 + 2xy + y^2}{x^2 + 2xy + 3y^2}.
\]
Final Answer:
\(\frac{dy}{dx} = -\frac{3x^2 + 2xy + y^2}{x^2 + 2xy + 3y^2}\).
Question:
4. (i) Find \(\frac{dy}{dx}\) for \(2x+3y=\sin x\) (NCERT).
Solution:
Differentiate both sides of
\[
2x+3y=\sin x
\]
with respect to \(x\). The derivative of the left-hand side is:
\[
\frac{d}{dx}(2x)+\frac{d}{dx}(3y)=2+3\frac{dy}{dx},
\]
and the derivative of the right-hand side is:
\[
\frac{d}{dx}(\sin x)=\cos x.
\]
Setting these equal, we have:
\[
2+3\frac{dy}{dx}=\cos x.
\]
Solving for \(\frac{dy}{dx}\), subtract \(2\) from both sides:
\[
3\frac{dy}{dx}=\cos x-2,
\]
and then divide both sides by \(3\):
\[
\frac{dy}{dx}=\frac{\cos x-2}{3}.
\]
Final Answer:
\(\frac{dy}{dx}=\frac{\cos x-2}{3}\).
Question 4(ii):
Find \( \frac{dy}{dx} \) for the equation \(2x+3y=\sin y\).
Solution:
Differentiate both sides of the equation with respect to \( x \):
\[
\frac{d}{dx}(2x+3y)= \frac{d}{dx}(\sin y).
\]
On the left-hand side:
\[
\frac{d}{dx}(2x)=2 \quad \text{and} \quad \frac{d}{dx}(3y)=3\frac{dy}{dx},
\]
so it becomes:
\[
2+3\frac{dy}{dx}.
\]
On the right-hand side, applying the chain rule:
\[
\frac{d}{dx}(\sin y)=\cos y\cdot\frac{dy}{dx}.
\]
Therefore, the differentiated equation is:
\[
2+3\frac{dy}{dx}=\cos y\cdot\frac{dy}{dx}.
\]
Rearranging the terms:
\[
2=\frac{dy}{dx}(\cos y-3).
\]
Solving for \( \frac{dy}{dx} \):
\[
\frac{dy}{dx}=\frac{2}{\cos y-3}.
\]
Final Answer:
\(\frac{dy}{dx}=\frac{2}{\cos y-3}\).
Question 5(i):
Find \( \frac{dy}{dx} \) for the equation \( \left(x^2+y^2\right)^2 = xy \).
Solution:
Differentiate both sides with respect to \( x \). Let
\[
u=x^2+y^2.
\]
Then the left-hand side becomes \( u^2 \) whose derivative is
\[
\frac{d}{dx}(u^2)=2u\frac{du}{dx}.
\]
Now, since
\[
\frac{du}{dx}=\frac{d}{dx}(x^2+y^2)=2x+2y\frac{dy}{dx},
\]
we have:
\[
\frac{d}{dx}\left[\left(x^2+y^2\right)^2\right] = 2(x^2+y^2)(2x+2y\frac{dy}{dx}) = 4(x^2+y^2)(x+y\frac{dy}{dx}).
\]
The right-hand side is the product \(xy\). Differentiate using the product rule:
\[
\frac{d}{dx}(xy)=y+x\frac{dy}{dx}.
\]
Thus, the differentiated equation is:
\[
4(x^2+y^2)(x+y\frac{dy}{dx})=y+x\frac{dy}{dx}.
\]
Now, expand and collect the terms containing \( \frac{dy}{dx} \):
\[
4x(x^2+y^2)+4y(x^2+y^2)\frac{dy}{dx}=y+x\frac{dy}{dx}.
\]
Rearranging gives:
\[
4y(x^2+y^2)\frac{dy}{dx} – x\frac{dy}{dx} = y-4x(x^2+y^2).
\]
Factor \( \frac{dy}{dx} \):
\[
\frac{dy}{dx}\left[4y(x^2+y^2)-x\right]=y-4x(x^2+y^2).
\]
Finally, solve for \( \frac{dy}{dx} \):
\[
\frac{dy}{dx}=\frac{y-4x(x^2+y^2)}{4y(x^2+y^2)-x}.
\]
Final Answer:
\(\frac{dy}{dx}=\frac{y-4x(x^2+y^2)}{4y(x^2+y^2)-x}\).
Question 5(ii):
Find \( \frac{dy}{dx} \) for the equation \( \sin (x+y)=\frac{2}{3} \).
Solution:
Differentiate both sides of the equation with respect to \( x \).
The left-hand side is \( \sin (x+y) \). Using the chain rule:
\[
\frac{d}{dx}[\sin (x+y)] = \cos (x+y)\cdot\frac{d}{dx}(x+y) = \cos (x+y)\cdot\left(1+\frac{dy}{dx}\right).
\]
The right-hand side is a constant:
\[
\frac{d}{dx}\left(\frac{2}{3}\right)=0.
\]
Therefore, the differentiated equation is:
\[
\cos (x+y)\cdot\left(1+\frac{dy}{dx}\right)=0.
\]
Since \( \cos (x+y) \neq 0 \) (as \( \sin (x+y)=\frac{2}{3} \) ensures \( x+y \) is such that the cosine is non-zero), we can divide by \( \cos (x+y) \):
\[
1+\frac{dy}{dx}=0.
\]
Hence, solving for \( \frac{dy}{dx} \):
\[
\frac{dy}{dx}=-1.
\]
Final Answer:
\(\frac{dy}{dx}=-1\).
Question 6:
If \( x^{2/3}+y^{2/3}=2 \), find \( \frac{dy}{dx} \) at \((1,1)\).
Solution:
Differentiate the equation \( x^{2/3}+y^{2/3}=2 \) implicitly with respect to \( x \):
\[
\frac{d}{dx}\left(x^{2/3}\right) + \frac{d}{dx}\left(y^{2/3}\right)=\frac{d}{dx}(2).
\]
The derivative of \( x^{2/3} \) is:
\[
\frac{2}{3}x^{-1/3}.
\]
For \( y^{2/3} \), applying the chain rule:
\[
\frac{d}{dx}\left(y^{2/3}\right)=\frac{2}{3}y^{-1/3}\frac{dy}{dx}.
\]
The right-hand side derivative is 0. Hence, we have:
\[
\frac{2}{3}x^{-1/3} + \frac{2}{3}y^{-1/3}\frac{dy}{dx}=0.
\]
Divide the entire equation by \(\frac{2}{3}\):
\[
x^{-1/3}+y^{-1/3}\frac{dy}{dx}=0.
\]
Rearranging for \(\frac{dy}{dx}\):
\[
y^{-1/3}\frac{dy}{dx}=-x^{-1/3} \quad \Longrightarrow \quad \frac{dy}{dx}=-\frac{x^{-1/3}}{y^{-1/3}}.
\]
Simplify the expression by writing:
\[
\frac{dy}{dx}=-\frac{y^{1/3}}{x^{1/3}}.
\]
Now, substitute the point \((1,1)\):
\[
\frac{dy}{dx}=-\frac{1^{1/3}}{1^{1/3}}=-1.
\]
Final Answer:
\(\frac{dy}{dx}=-1\) at the point \((1,1)\).
Question 7(i):
Use implicit differentiation to verify that
\[
\frac{dy}{dx}\cdot\frac{dx}{dy}=1
\]
when \( y^2 = 4ax \).
Solution:
First, differentiate \( y^2=4ax \) with respect to \( x \):
\[
2y\frac{dy}{dx}=4a \quad \Longrightarrow \quad \frac{dy}{dx}=\frac{4a}{2y}=\frac{2a}{y}.
\]
Next, differentiate the same equation with respect to \( y \), treating \( x \) as a function of \( y \):
\[
\frac{d}{dy}(y^2)=\frac{d}{dy}(4ax) \quad \Longrightarrow \quad 2y = 4a\frac{dx}{dy}.
\]
Solve for \( \frac{dx}{dy} \):
\[
\frac{dx}{dy}=\frac{2y}{4a}=\frac{y}{2a}.
\]
Now, multiply \( \frac{dy}{dx} \) and \( \frac{dx}{dy} \):
\[
\frac{dy}{dx}\cdot\frac{dx}{dy}=\frac{2a}{y}\cdot\frac{y}{2a}=1.
\]
Final Answer:
Verified that \(\frac{dy}{dx}\cdot\frac{dx}{dy}=1\) when \( y^2=4ax \).
Question 7(ii):
Use implicit differentiation to verify that
\[
\frac{dy}{dx} \cdot \frac{dx}{dy} = 1
\quad \text{for the equation} \quad x^3 + y^3 = 3axy.
\]
Solution:
We start with the equation:
\[
x^3 + y^3 = 3axy.
\]
Differentiate both sides with respect to \( x \):
Left-hand side:
\[
\frac{d}{dx}(x^3) + \frac{d}{dx}(y^3) = 3x^2 + 3y^2\frac{dy}{dx}.
\]
Right-hand side (product rule on \( 3axy \)):
\[
\frac{d}{dx}(3axy) = 3a\left(y + x\frac{dy}{dx}\right).
\]
So the differentiated equation becomes:
\[
3x^2 + 3y^2\frac{dy}{dx} = 3a\left(y + x\frac{dy}{dx}\right).
\]
Expand the right-hand side:
\[
3x^2 + 3y^2\frac{dy}{dx} = 3ay + 3ax\frac{dy}{dx}.
\]
Move all terms to one side:
\[
3y^2\frac{dy}{dx} – 3ax\frac{dy}{dx} = 3ay – 3x^2.
\]
Factor out \( \frac{dy}{dx} \):
\[
(3y^2 – 3ax)\frac{dy}{dx} = 3ay – 3x^2.
\]
Divide both sides:
\[
\frac{dy}{dx} = \frac{3ay – 3x^2}{3y^2 – 3ax}.
\]
Simplify:
\[
\frac{dy}{dx} = \frac{ay – x^2}{y^2 – ax}.
\]
Now, take reciprocal to get \( \frac{dx}{dy} \):
\[
\frac{dx}{dy} = \frac{y^2 – ax}{ay – x^2}.
\]
Multiply:
\[
\frac{dy}{dx} \cdot \frac{dx}{dy} = \left( \frac{ay – x^2}{y^2 – ax} \right) \cdot \left( \frac{y^2 – ax}{ay – x^2} \right) = 1.
\]
Final Answer:
\[
\frac{dy}{dx} \cdot \frac{dx}{dy} = 1.
\]
Question 8(i):
Find \( \frac{dy}{dx} \) for the equation \( y+\sin y=\cos x \) (NCERT).
Solution:
Differentiate the given equation with respect to \( x \):
\[
\frac{d}{dx}\left(y+\sin y\right)=\frac{d}{dx}\left(\cos x\right).
\]
The left-hand side becomes:
\[
\frac{dy}{dx}+\cos y\frac{dy}{dx}=\left(1+\cos y\right)\frac{dy}{dx},
\]
while the right-hand side is:
\[
-\sin x.
\]
Hence, we have:
\[
\left(1+\cos y\right)\frac{dy}{dx}=-\sin x.
\]
Solving for \( \frac{dy}{dx} \):
\[
\frac{dy}{dx}=-\frac{\sin x}{1+\cos y}.
\]
Final Answer:
\(\frac{dy}{dx}=-\frac{\sin x}{1+\cos y}\).
Question 8(ii):
Find \( \frac{dy}{dx} \) for the equation \( ax+by^2=\cos y \).
Solution:
Differentiate both sides of the equation with respect to \( x \).
For the left-hand side:
\[
\frac{d}{dx}(ax)=a \quad \text{and} \quad \frac{d}{dx}(by^2)=2by\frac{dy}{dx}.
\]
For the right-hand side, applying the chain rule:
\[
\frac{d}{dx}(\cos y)=-\sin y\frac{dy}{dx}.
\]
Therefore, the differentiated equation becomes:
\[
a+2by\frac{dy}{dx}=-\sin y\frac{dy}{dx}.
\]
Rearranging to collect terms involving \( \frac{dy}{dx} \):
\[
2by\frac{dy}{dx}+\sin y\frac{dy}{dx}=-a.
\]
Factor out \( \frac{dy}{dx} \):
\[
\frac{dy}{dx}(2by+\sin y)=-a.
\]
Solving for \( \frac{dy}{dx} \):
\[
\frac{dy}{dx}=-\frac{a}{2by+\sin y}.
\]
Final Answer:
\(\frac{dy}{dx}=-\frac{a}{2by+\sin y}\).
Question 8(iii):
Find \( \frac{dy}{dx} \) for the equation
\[
y\sec x+\tan x+x^2y=0.
\]
Solution:
We differentiate the equation implicitly with respect to \( x \).
The given equation is:
\[
y\sec x + \tan x + x^2y = 0.
\]
\(\textbf{Step 1: Differentiate each term}\)
\(\bullet\) For \( y\sec x \), using the product rule:
\[
\frac{d}{dx}(y\sec x)=\sec x\frac{dy}{dx}+y\sec x\tan x.
\]
\(\bullet\) For \( \tan x \):
\[
\frac{d}{dx}(\tan x)=\sec^2 x.
\]
\(\bullet\) For \( x^2y \), again using the product rule:
\[
\frac{d}{dx}(x^2y)=2xy+x^2\frac{dy}{dx}.
\]
\(\textbf{Step 2: Write the differentiated equation}\)
Combining the derivatives, we have:
\[
\sec x\frac{dy}{dx}+y\sec x\tan x + \sec^2 x + 2xy + x^2\frac{dy}{dx}=0.
\]
\(\textbf{Step 3: Group the terms containing } \frac{dy}{dx}\)
Factor \( \frac{dy}{dx} \):
\[
\left(\sec x+x^2\right)\frac{dy}{dx} + \left(y\sec x\tan x+\sec^2 x+2xy\right)=0.
\]
\(\textbf{Step 4: Solve for } \frac{dy}{dx}\)
Isolate \( \frac{dy}{dx} \):
\[
\left(\sec x+x^2\right)\frac{dy}{dx} = -\left(y\sec x\tan x+\sec^2 x+2xy\right),
\]
and thus,
\[
\frac{dy}{dx}=-\frac{y\sec x\tan x+\sec^2 x+2xy}{\sec x+x^2}.
\]
Final Answer:
\[
\frac{dy}{dx}=-\frac{y\sec x\tan x+\sec^2 x+2xy}{\sec x+x^2}.
\]
Question 8(iv):
Find \( \frac{dy}{dx} \) for the equation
\[
\sin^2 x+\cos^2 y=1.
\]
Solution:
Differentiate both sides of the equation with respect to \( x \):
\[
\frac{d}{dx}\left(\sin^2 x+\cos^2 y\right)=\frac{d}{dx}(1).
\]
The right-hand side is 0.
\(\textbf{Step 1: Differentiate } \sin^2 x\)
Using the chain rule:
\[
\frac{d}{dx}\left(\sin^2 x\right)=2\sin x\cos x.
\]
\(\textbf{Step 2: Differentiate } \cos^2 y\)
Again, using the chain rule:
\[
\frac{d}{dx}\left(\cos^2 y\right)=2\cos y\cdot(-\sin y)\cdot\frac{dy}{dx}=-2\cos y\sin y\frac{dy}{dx}.
\]
\(\textbf{Step 3: Form the Equation}\)
The differentiated equation becomes:
\[
2\sin x\cos x-2\cos y\sin y\frac{dy}{dx}=0.
\]
\(\textbf{Step 4: Solve for } \frac{dy}{dx}\)
Rearranging:
\[
2\cos y\sin y\frac{dy}{dx}=2\sin x\cos x,
\]
so that:
\[
\frac{dy}{dx}=\frac{2\sin x\cos x}{2\sin y\cos y}=\frac{\sin x\cos x}{\sin y\cos y}.
\]
Recognizing the double-angle identities:
\[
\sin 2x=2\sin x\cos x \quad \text{and} \quad \sin 2y=2\sin y\cos y,
\]
we can write:
\[
\frac{dy}{dx}=\frac{\sin 2x}{\sin 2y}.
\]
Final Answer:
\(\frac{dy}{dx}=\frac{\sin 2x}{\sin 2y}\).
Question:
8(v) \( xy + y^{2} = \tan x + y \) (NCERT)
Solution:
We start with the given equation:
\[
xy + y^{2} = \tan x + y.
\]
Differentiating both sides with respect to \( x \):
\[
\frac{d}{dx}(xy) + \frac{d}{dx}(y^{2}) = \frac{d}{dx}(\tan x) + \frac{d}{dx}(y).
\]
Note that:
\[
\frac{d}{dx}(xy) = y + x\frac{dy}{dx}, \quad \frac{d}{dx}(y^{2}) = 2y\frac{dy}{dx},
\]
\[
\frac{d}{dx}(\tan x) = \sec^{2} x, \quad \frac{d}{dx}(y) = \frac{dy}{dx}.
\]
Substituting these derivatives into the equation, we obtain:
\[
y + x\frac{dy}{dx} + 2y\frac{dy}{dx} = \sec^{2} x + \frac{dy}{dx}.
\]
Combine the terms containing \(\frac{dy}{dx}\):
\[
\left( x + 2y – 1 \right)\frac{dy}{dx} = \sec^{2} x – y.
\]
Finally, solving for \(\frac{dy}{dx}\) gives:
\[
\frac{dy}{dx} = \frac{\sec^{2} x – y}{x + 2y – 1}.
\]
Final Answer:
\(\frac{dy}{dx} = \frac{\sec^{2} x – y}{x + 2y – 1}\).
Question:
8(vi) \( y=\tan (x+y) \)
Solution:
Differentiating both sides of the equation with respect to \( x \), we get:
\[
\frac{d}{dx}(y) = \frac{d}{dx}\left(\tan(x+y)\right).
\]
The left side is:
\[
\frac{dy}{dx}.
\]
The right side, using the chain rule, is:
\[
\sec^{2}(x+y) \cdot \left(1+\frac{dy}{dx}\right).
\]
Thus, we have:
\[
\frac{dy}{dx} = \sec^{2}(x+y)\left(1+\frac{dy}{dx}\right).
\]
Rearranging to solve for \(\frac{dy}{dx}\):
\[
\frac{dy}{dx} – \sec^{2}(x+y)\frac{dy}{dx} = \sec^{2}(x+y),
\]
\[
\frac{dy}{dx}\left(1-\sec^{2}(x+y)\right) = \sec^{2}(x+y),
\]
\[
\frac{dy}{dx} = \frac{\sec^{2}(x+y)}{1-\sec^{2}(x+y)}.
\]
Noting that \(1-\sec^{2}(x+y) = -\tan^{2}(x+y)\), we obtain:
\[
\frac{dy}{dx} = -\frac{\sec^{2}(x+y)}{\tan^{2}(x+y)}.
\]
Since
\[
\frac{\sec^{2}(x+y)}{\tan^{2}(x+y)} = \frac{1/\cos^{2}(x+y)}{\sin^{2}(x+y)/\cos^{2}(x+y)} = \frac{1}{\sin^{2}(x+y)} = \text{cosec}^{2}(x+y),
\]
we have:
\[
\frac{dy}{dx} = -\text{cosec}^{2}(x+y).
\]
Final Answer:
\(\frac{dy}{dx} = -\text{cosec}^{2}(x+y)\).
Question:
8(vii) \( \sin(xy)+\frac{x}{y}= x^{2}-y \) (NCERT Exemplar)
Solution:
Starting with the given equation:
\[
\sin(xy)+\frac{x}{y}= x^{2}-y.
\]
Differentiate both sides with respect to \( x \). For the left-hand side, we differentiate term by term:
\[
\frac{d}{dx}\left(\sin(xy)\right) + \frac{d}{dx}\left(\frac{x}{y}\right).
\]
For \(\sin(xy)\), using the chain rule:
\[
\frac{d}{dx}\left(\sin(xy)\right) = \cos(xy)\cdot\frac{d}{dx}(xy) = \cos(xy)\left(y+x\frac{dy}{dx}\right).
\]
For \(\frac{x}{y}\), rewriting as \(x y^{-1}\) and differentiating:
\[
\frac{d}{dx}\left(xy^{-1}\right)= \frac{1}{y} – \frac{x}{y^{2}}\frac{dy}{dx}.
\]
The derivative of the right-hand side \(x^2-y\) is:
\[
\frac{d}{dx}(x^2-y)= 2x-\frac{dy}{dx}.
\]
Combining these, we have:
\[
\cos(xy)\left(y+x\frac{dy}{dx}\right) + \frac{1}{y}-\frac{x}{y^{2}}\frac{dy}{dx} = 2x-\frac{dy}{dx}.
\]
Grouping the terms containing \(\frac{dy}{dx}\) on one side:
\[
\cos(xy)y + \frac{1}{y} + \left(\cos(xy)x-\frac{x}{y^{2}}\right)\frac{dy}{dx} = 2x-\frac{dy}{dx}.
\]
Bring the \(\frac{dy}{dx}\) term from the right-hand side to the left:
\[
\cos(xy)y + \frac{1}{y} + \left(\cos(xy)x-\frac{x}{y^{2}}+\;1\right)\frac{dy}{dx} = 2x.
\]
Finally, solving for \(\frac{dy}{dx}\):
\[
\frac{dy}{dx} = \frac{2x-\cos(xy)y-\frac{1}{y}}{\cos(xy)x-\frac{x}{y^{2}}+1}.
\]
Final Answer:
\(\displaystyle \frac{dy}{dx} = \frac{2x-\cos(xy)y-\frac{1}{y}}{\cos(xy)x-\frac{x}{y^{2}}+1}\).
Question:
8(viii) \( \sec(x+y)=xy \) (NCERT Exemplar)
Solution:
We start with the equation:
\[
\sec(x+y)=xy.
\]
Differentiating both sides with respect to \( x \):
\[
\frac{d}{dx}\left(\sec(x+y)\right)=\frac{d}{dx}(xy).
\]
Using the chain rule on the left-hand side:
\[
\frac{d}{dx}\left(\sec(x+y)\right)=\sec(x+y)\tan(x+y)\left(1+\frac{dy}{dx}\right).
\]
The derivative of the right-hand side is:
\[
\frac{d}{dx}(xy)= y+x\frac{dy}{dx}.
\]
Thus, we have:
\[
\sec(x+y)\tan(x+y)\left(1+\frac{dy}{dx}\right)= y+x\frac{dy}{dx}.
\]
Expanding the left-hand side:
\[
\sec(x+y)\tan(x+y)+\sec(x+y)\tan(x+y)\frac{dy}{dx}= y+x\frac{dy}{dx}.
\]
Grouping the terms containing \(\frac{dy}{dx}\):
\[
\sec(x+y)\tan(x+y)\frac{dy}{dx}-x\frac{dy}{dx}= y-\sec(x+y)\tan(x+y).
\]
Factor out \(\frac{dy}{dx}\):
\[
\left(\sec(x+y)\tan(x+y)-x\right)\frac{dy}{dx}= y-\sec(x+y)\tan(x+y).
\]
Finally, solving for \(\frac{dy}{dx}\) gives:
\[
\frac{dy}{dx}=\frac{y-\sec(x+y)\tan(x+y)}{\sec(x+y)\tan(x+y)-x}.
\]
Final Answer:
\(\displaystyle \frac{dy}{dx}=\frac{y-\sec(x+y)\tan(x+y)}{\sec(x+y)\tan(x+y)-x}\).
Question:
9. If \(\sec\left(\frac{x+y}{x-y}\right)=a\), prove that \(\frac{dy}{dx}=\frac{y}{x}\).
Solution:
We start with the given equation:
\[
\sec\left(\frac{x+y}{x-y}\right)=a.
\]
Since \(a\) is a constant, its derivative with respect to \(x\) is zero:
\[
\frac{d}{dx}\left[\sec\left(\frac{x+y}{x-y}\right)\right] = 0.
\]
Using the chain rule, the derivative of the left-hand side is:
\[
\sec\left(\frac{x+y}{x-y}\right)\tan\left(\frac{x+y}{x-y}\right) \cdot \frac{d}{dx}\left(\frac{x+y}{x-y}\right)=0.
\]
Since \(\sec\left(\frac{x+y}{x-y}\right)\tan\left(\frac{x+y}{x-y}\right)\) is generally non-zero, we must have:
\[
\frac{d}{dx}\left(\frac{x+y}{x-y}\right)=0.
\]
Let \(u=\frac{x+y}{x-y}\). Differentiating using the quotient rule:
\[
\frac{du}{dx}=\frac{(1+\frac{dy}{dx})(x-y)-(x+y)(1-\frac{dy}{dx})}{(x-y)^2}=0.
\]
Expanding the numerator:
\[
(1+\frac{dy}{dx})(x-y) = x-y+x\frac{dy}{dx}-y\frac{dy}{dx},
\]
\[
(1-\frac{dy}{dx})(x+y) = x+y-x\frac{dy}{dx}-y\frac{dy}{dx}.
\]
Therefore, the numerator becomes:
\[
\Bigl[x-y+x\frac{dy}{dx}-y\frac{dy}{dx}\Bigr] – \Bigl[x+y-x\frac{dy}{dx}-y\frac{dy}{dx}\Bigr]=0.
\]
Simplifying:
\[
(x-y – x-y) + \left(x\frac{dy}{dx} – y\frac{dy}{dx}+x\frac{dy}{dx}+y\frac{dy}{dx}\right)= -2y+2x\frac{dy}{dx}=0.
\]
This simplifies to:
\[
2x\frac{dy}{dx} = 2y.
\]
Dividing both sides by \(2x\) (assuming \(x\neq 0\)):
\[
\frac{dy}{dx}=\frac{y}{x}.
\]
Final Answer:
\(\frac{dy}{dx}=\frac{y}{x}\).
Question:
10(i) If \( y = x \sin (a+y) \), prove that
\[
\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin(a+y)-y\cos(a+y)}.
\]
Solution:
We start with the equation:
\[
y = x \sin (a+y).
\]
Differentiating both sides with respect to \( x \):
\[
\frac{dy}{dx} = \sin(a+y) + x\cos(a+y) \cdot \frac{dy}{dx}.
\]
Rearranging to collect the \(\frac{dy}{dx}\) terms:
\[
\frac{dy}{dx} – x\cos(a+y)\frac{dy}{dx} = \sin(a+y),
\]
\[
\frac{dy}{dx}\left(1-x\cos(a+y)\right) = \sin(a+y).
\]
Solving for \(\frac{dy}{dx}\) gives:
\[
\frac{dy}{dx} = \frac{\sin(a+y)}{1-x\cos(a+y)}.
\]
From the original equation, we have:
\[
y = x\sin(a+y) \quad \Longrightarrow \quad x = \frac{y}{\sin(a+y)}.
\]
Substituting this into the denominator:
\[
1-x\cos(a+y) = 1-\frac{y}{\sin(a+y)}\cos(a+y)
= \frac{\sin(a+y)-y\cos(a+y)}{\sin(a+y)}.
\]
Therefore,
\[
\frac{dy}{dx} = \frac{\sin(a+y)}{\frac{\sin(a+y)-y\cos(a+y)}{\sin(a+y)}}
= \frac{\sin^2(a+y)}{\sin(a+y)-y\cos(a+y)}.
\]
Final Answer:
\(\displaystyle \frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin(a+y)-y\cos(a+y)}\).
Question:
10(ii) If \( \sin x = y \sin(x+a) \), prove that
\[
\frac{dy}{dx} = \frac{\sin a}{\sin^2(x+a)}.
\]
Solution:
Starting with the given equation:
\[
\sin x = y \sin(x+a),
\]
we differentiate both sides with respect to \( x \).
Differentiating the left-hand side:
\[
\frac{d}{dx}(\sin x)=\cos x.
\]
For the right-hand side, applying the product rule:
\[
\frac{d}{dx}\bigl(y \sin(x+a)\bigr)=\frac{dy}{dx}\sin(x+a)+y\cos(x+a).
\]
Thus, we have:
\[
\cos x=\frac{dy}{dx}\sin(x+a)+y\cos(x+a).
\]
From the original equation, we express \( y \) as:
\[
y=\frac{\sin x}{\sin(x+a)}.
\]
Substituting this value of \( y \) into our differentiated equation:
\[
\cos x=\frac{dy}{dx}\sin(x+a)+\frac{\sin x}{\sin(x+a)}\cos(x+a).
\]
Multiply through by \(\sin(x+a)\) to eliminate the denominator:
\[
\cos x \sin(x+a)=\frac{dy}{dx}\sin^2(x+a)+\sin x \cos(x+a).
\]
Rearranging the equation to solve for \(\frac{dy}{dx}\):
\[
\frac{dy}{dx}\sin^2(x+a)=\cos x \sin(x+a)-\sin x \cos(x+a).
\]
Recognize that the right-hand side is the sine of the difference of angles:
\[
\cos x \sin(x+a)-\sin x \cos(x+a)=\sin\bigl((x+a)-x\bigr)=\sin a.
\]
Therefore, we obtain:
\[
\frac{dy}{dx}\sin^2(x+a)=\sin a.
\]
Finally, solving for \(\frac{dy}{dx}\) gives:
\[
\frac{dy}{dx}=\frac{\sin a}{\sin^2(x+a)}.
\]
Final Answer:
\(\displaystyle \frac{dy}{dx}=\frac{\sin a}{\sin^2(x+a)}\).
Question:
10(iii) If \( \sin y = x \sin (a+y) \), prove that
\[
\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}.
\]
Solution:
Start with the given equation:
\[
\sin y = x \sin (a+y).
\]
Differentiate both sides with respect to \( x \). For the left-hand side, applying the chain rule:
\[
\frac{d}{dx}(\sin y)=\cos y \cdot \frac{dy}{dx}.
\]
For the right-hand side, using the product rule:
\[
\frac{d}{dx}\bigl(x \sin (a+y)\bigr)=\sin (a+y)+x\cos (a+y)\cdot\frac{dy}{dx}.
\]
Thus, we have:
\[
\cos y\frac{dy}{dx} = \sin (a+y)+x\cos (a+y)\frac{dy}{dx}.
\]
Bringing the terms involving \(\frac{dy}{dx}\) to one side:
\[
\cos y\frac{dy}{dx} – x\cos (a+y)\frac{dy}{dx} = \sin (a+y).
\]
Factor out \(\frac{dy}{dx}\):
\[
\frac{dy}{dx}\left(\cos y – x\cos (a+y)\right)=\sin (a+y).
\]
Therefore,
\[
\frac{dy}{dx}=\frac{\sin (a+y)}{\cos y – x\cos (a+y)}.
\]
From the original equation, express \( x \) as:
\[
x=\frac{\sin y}{\sin (a+y)}.
\]
Substitute this value into the denominator:
\[
\cos y – \frac{\sin y}{\sin (a+y)}\cos (a+y)=\frac{\cos y\sin (a+y)-\sin y\cos (a+y)}{\sin (a+y)}.
\]
Recognize that the numerator is the sine of a difference:
\[
\cos y\sin (a+y)-\sin y\cos (a+y)=\sin\bigl((a+y)-y\bigr)=\sin a.
\]
Thus, the denominator simplifies to:
\[
\frac{\sin a}{\sin (a+y)}.
\]
Substituting back, we obtain:
\[
\frac{dy}{dx}=\frac{\sin (a+y)}{\frac{\sin a}{\sin (a+y)}}=\frac{\sin^2 (a+y)}{\sin a}.
\]
Final Answer:
\(\displaystyle \frac{dy}{dx}=\frac{\sin^2(a+y)}{\sin a}\).
Question:
II. (i) \( y=\sqrt{x+\sqrt{x+\sqrt{x+\ldots \infty}}} \), prove that
\[
(2y-1)\frac{dy}{dx}=1.
\]
Solution:
Notice that the expression for \( y \) is self-referential. We can write:
\[
y=\sqrt{x+y}.
\]
Squaring both sides gives:
\[
y^{2}=x+y.
\]
Differentiate both sides with respect to \( x \):
\[
2y\frac{dy}{dx}=1+\frac{dy}{dx}.
\]
Rearranging to isolate \(\frac{dy}{dx}\):
\[
2y\frac{dy}{dx}-\frac{dy}{dx}=1,
\]
\[
(2y-1)\frac{dy}{dx}=1.
\]
Final Answer:
\(\displaystyle (2y-1)\frac{dy}{dx}=1\).
Question:
II. (ii) If \( y=\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+\ldots \infty}}} \), prove that
\[
(2y-1)\frac{dy}{dx}=\cos x.
\]
Solution:
Notice that the infinite nested radical is self-referential, so we can write:
\[
y=\sqrt{\sin x+y}.
\]
Squaring both sides gives:
\[
y^2=\sin x+y.
\]
Differentiating both sides with respect to \( x \) yields:
\[
2y\frac{dy}{dx}=\cos x+\frac{dy}{dx}.
\]
Rearranging the terms to collect \(\frac{dy}{dx}\):
\[
2y\frac{dy}{dx}-\frac{dy}{dx}=\cos x,
\]
\[
(2y-1)\frac{dy}{dx}=\cos x.
\]
Final Answer:
\(\displaystyle (2y-1)\frac{dy}{dx}=\cos x\).
Question:
II. (iii) If \( y=\sqrt{\tan x+\sqrt{\tan x+\sqrt{\tan x+\ldots \infty}}} \), prove that
\[
(2y-1)\frac{dy}{dx}=\sec^2 x.
\]
Solution:
Since the expression is infinitely nested and self-referential, we can set:
\[
y=\sqrt{\tan x+y}.
\]
Squaring both sides:
\[
y^2 = \tan x + y.
\]
Differentiate both sides with respect to \( x \):
\[
2y\frac{dy}{dx} = \sec^2 x + \frac{dy}{dx}.
\]
Bringing like terms together:
\[
2y\frac{dy}{dx} – \frac{dy}{dx} = \sec^2 x,
\]
\[
(2y – 1)\frac{dy}{dx} = \sec^2 x.
\]
Final Answer:
\(\displaystyle (2y-1)\frac{dy}{dx}=\sec^2 x\).