Here is the complete ML Aggarwal Class 12 Solutions of Exercise – 5.13 for Chapter 5 – Continuity and Differentiability. Each question is solved step by step for better understanding.
Question:
1. (i) Find the second order derivative of \( x^{20} \).
Solution:
We begin by differentiating the function:
\[
\frac{d}{dx} \left( x^{20} \right) = 20x^{19}.
\]
Next, we differentiate the result to obtain the second derivative:
\[
\frac{d^2}{dx^2} \left( x^{20} \right) = \frac{d}{dx} \left( 20x^{19} \right) = 20 \cdot 19x^{18} = 380x^{18}.
\]
Final Answer:
\( 380x^{18} \).
Question:
1. (ii) Find the second order derivative of \( x^{2} + 3x + 2 \).
Solution:
First, differentiate the function:
\[
\frac{d}{dx}(x^{2} + 3x + 2) = 2x + 3.
\]
Next, differentiate the result to obtain the second derivative:
\[
\frac{d^2}{dx^2}(x^{2} + 3x + 2) = \frac{d}{dx}(2x + 3) = 2.
\]
Final Answer:
\( 2 \).
Question:
1. (iii) Find the second order derivative of \( x^{3}-5x^{2}+3x+4 \).
Solution:
First, differentiate the function:
\[
\frac{d}{dx}\left(x^{3}-5x^{2}+3x+4\right) = 3x^{2}-10x+3.
\]
Next, differentiate the first derivative:
\[
\frac{d^2}{dx^2}\left(x^{3}-5x^{2}+3x+4\right) = \frac{d}{dx}\left(3x^{2}-10x+3\right) = 6x-10.
\]
Final Answer:
\( 6x-10 \).
Question:
1. (iv) Find the second order derivative of \( x^{3}+\tan x \).
Solution:
Differentiate the function:
\[
\frac{d}{dx}\left(x^{3}+\tan x\right) = 3x^{2}+\sec^{2}x.
\]
Then, differentiate again to obtain the second derivative.
For the first term:
\[
\frac{d}{dx}\left(3x^{2}\right) = 6x.
\]
For the second term, recall that
\[
\frac{d}{dx}\left(\sec^{2}x\right) = 2\sec^{2}x\tan x.
\]
Thus, the second derivative is:
\[
\frac{d^{2}}{dx^{2}}\left(x^{3}+\tan x\right) = 6x+2\sec^{2}x\tan x.
\]
Final Answer:
\( 6x+2\sec^{2}x\tan x \).
Question:
1. (v) Find the second order derivative of \( \log x \).
Solution:
First, differentiate the function:
\[
\frac{d}{dx}\left(\log x\right) = \frac{1}{x}.
\]
Next, differentiate the result:
\[
\frac{d^2}{dx^2}\left(\log x\right) = \frac{d}{dx}\left(\frac{1}{x}\right) = -\frac{1}{x^2}.
\]
Final Answer:
\( -\frac{1}{x^2} \).
Question:
1. (vi) Find the second order derivative of \( \tan^{-1} x \).
Solution:
First, differentiate the function:
\[
\frac{d}{dx}\left(\tan^{-1} x\right)=\frac{1}{1+x^{2}}.
\]
Next, differentiate the first derivative using the chain rule:
\[
\frac{d^{2}}{dx^{2}}\left(\tan^{-1} x\right)=\frac{d}{dx}\left(\frac{1}{1+x^{2}}\right)=-\frac{2x}{(1+x^{2})^{2}}.
\]
Final Answer:
\( -\frac{2x}{(1+x^{2})^{2}} \).
Question:
2. (i) If \( y=\log (x-2), \, x>2 \), find \(\frac{d^{2}y}{dx^{2}}\).
Solution:
Given:
\[
y=\log (x-2).
\]
First, differentiate \( y \) with respect to \( x \):
\[
\frac{dy}{dx}=\frac{1}{x-2}.
\]
Next, differentiate \( \frac{dy}{dx} \) to obtain the second derivative:
\[
\frac{d^{2}y}{dx^{2}}=\frac{d}{dx}\left(\frac{1}{x-2}\right)=-\frac{1}{(x-2)^{2}}.
\]
Final Answer:
\(-\frac{1}{(x-2)^{2}}\).
Question:
2. (ii) If \( y=\cot x \), find \(\frac{d^{2}y}{dx^{2}}\) at \( x=\frac{\pi}{4} \).
Solution:
Given:
\[
y=\cot x.
\]
First, differentiate \( y \) with respect to \( x \):
\[
\frac{dy}{dx}=-\mathrm{cosec}^{2} x.
\]
Next, differentiate the first derivative:
\[
\frac{d^{2}y}{dx^{2}}=\frac{d}{dx}\left(-\mathrm{cosec}^{2} x\right)
=2\mathrm{cosec}^{2} x \cot x.
\]
Now, evaluate at \( x=\frac{\pi}{4} \).
We have:
\[
\mathrm{cosec}\left(\frac{\pi}{4}\right)=\frac{1}{\sin\frac{\pi}{4}}=\frac{1}{\frac{\sqrt{2}}{2}}=\sqrt{2}, \quad \mathrm{cosec}^{2}\left(\frac{\pi}{4}\right)=2,
\]
and
\[
\cot\left(\frac{\pi}{4}\right)=1.
\]
Therefore,
\[
\frac{d^{2}y}{dx^{2}}\Bigg|_{x=\frac{\pi}{4}}=2\cdot 2\cdot 1=4.
\]
Final Answer:
\( 4 \).
Question:
3. (i) Find the second order derivative of \( \sin^{-1} x \).
Solution:
Let
\[
y=\sin^{-1} x.
\]
Then the first derivative is
\[
\frac{dy}{dx}=\frac{1}{\sqrt{1-x^2}}.
\]
Writing the derivative in exponent form,
\[
\frac{dy}{dx}=(1-x^2)^{-\frac{1}{2}},
\]
we differentiate to obtain the second derivative:
\[
\frac{d^2y}{dx^2}=\frac{d}{dx}\left((1-x^2)^{-\frac{1}{2}}\right)
= -\frac{1}{2}(1-x^2)^{-\frac{3}{2}}(-2x)
= \frac{x}{(1-x^2)^{\frac{3}{2}}}.
\]
Final Answer:
\( \frac{x}{(1-x^2)^{\frac{3}{2}}} \).
Question 3(ii):
Find the second order derivative of \( y = x \cos x \).
Solution:
We start by differentiating the function using the product rule:
\[
y = x \cos x \quad \Rightarrow \quad y’ = \frac{d}{dx}(x)\cos x + x\,\frac{d}{dx}(\cos x) = \cos x – x \sin x.
\]
Next, we differentiate \( y’ \) to obtain the second derivative:
\[
y” = \frac{d}{dx}\left(\cos x – x \sin x\right)
= -\sin x – \left(\sin x + x \cos x\right)
= -2 \sin x – x \cos x.
\]
Final Answer:
\[
y” = -2 \sin x – x \cos x.
\]
Question 3(iii):
Find the second order derivative of \( y = x \sin 2x \).
Solution:
First, we differentiate using the product rule. For the function
\[
y = x \sin 2x,
\]
we have:
\[
y’ = \frac{d}{dx}(x)\sin 2x + x\,\frac{d}{dx}(\sin 2x) = \sin 2x + x\cdot(2\cos 2x) = \sin 2x + 2x\cos 2x.
\]
Next, we differentiate \( y’ \) to obtain the second derivative:
\[
y” = \frac{d}{dx}\left(\sin 2x + 2x\cos 2x\right).
\]
Differentiating term-by-term:
\[
\frac{d}{dx}(\sin 2x) = 2\cos 2x,
\]
and applying the product rule to \(2x\cos 2x\):
\[
\frac{d}{dx}(2x\cos 2x) = 2\cos 2x + 2x\cdot(-2\sin 2x) = 2\cos 2x – 4x\sin 2x.
\]
Thus, combining the results:
\[
y” = 2\cos 2x + 2\cos 2x – 4x\sin 2x = 4\cos 2x – 4x\sin 2x.
\]
Final Answer:
\[
y” = 4\cos 2x – 4x\sin 2x.
\]
Question 3(iv):
Find the second order derivative of \( y = e^{x}\sin 5x \).
Solution:
We start by differentiating the given function using the product rule.
\[
y = e^{x}\sin 5x.
\]
First derivative:
\[
y’ = \frac{d}{dx}\left(e^{x}\right)\sin 5x + e^{x}\frac{d}{dx}\left(\sin 5x\right)
= e^{x}\sin 5x + e^{x}\cdot 5\cos 5x
= e^{x}\left(\sin 5x + 5\cos 5x\right).
\]
Next, we differentiate \( y’ \) to find the second derivative:
\[
y” = \frac{d}{dx}\left(e^{x}\left(\sin 5x + 5\cos 5x\right)\right).
\]
Using the product rule again:
\[
y” = e^{x}\left(\sin 5x + 5\cos 5x\right) + e^{x}\left(5\cos 5x – 25\sin 5x\right).
\]
Combining like terms, we obtain:
\[
y” = e^{x}\left[\sin 5x + 5\cos 5x + 5\cos 5x – 25\sin 5x\right]
= e^{x}\left(-24\sin 5x + 10\cos 5x\right).
\]
This can be factored as:
\[
y” = 2e^{x}\left(5\cos 5x – 12\sin 5x\right).
\]
Final Answer:
\[
y” = 2e^{x}\left(5\cos 5x – 12\sin 5x\right).
\]
Question 3(v):
Find the second order derivative of \( y = e^{2x}\sin 3x \).
Solution:
First, differentiate using the product rule.
Given:
\[
y = e^{2x}\sin 3x.
\]
The first derivative is:
\[
y’ = \frac{d}{dx}\left(e^{2x}\right)\sin 3x + e^{2x}\frac{d}{dx}\left(\sin 3x\right)
= 2e^{2x}\sin 3x + e^{2x}\cdot 3\cos 3x.
\]
Thus, we can write:
\[
y’ = e^{2x}\left(2\sin 3x + 3\cos 3x\right).
\]
Next, differentiate \( y’ \) to find the second derivative:
\[
y” = \frac{d}{dx}\left[e^{2x}\left(2\sin 3x + 3\cos 3x\right)\right].
\]
Applying the product rule again:
\[
y” = \frac{d}{dx}\left(e^{2x}\right)\left(2\sin 3x + 3\cos 3x\right)
+ e^{2x}\frac{d}{dx}\left(2\sin 3x + 3\cos 3x\right).
\]
Compute each derivative:
\[
\frac{d}{dx}\left(e^{2x}\right)= 2e^{2x},
\]
\[
\frac{d}{dx}\left(2\sin 3x\right) = 6\cos 3x,\quad \frac{d}{dx}\left(3\cos 3x\right) = -9\sin 3x.
\]
Therefore:
\[
y” = 2e^{2x}\left(2\sin 3x + 3\cos 3x\right)
+ e^{2x}\left(6\cos 3x – 9\sin 3x\right).
\]
Combine like terms:
\[
y” = e^{2x}\left[4\sin 3x + 6\cos 3x + 6\cos 3x – 9\sin 3x\right]
= e^{2x}\left[-5\sin 3x + 12\cos 3x\right].
\]
Final Answer:
\[
y” = e^{2x}\left(12\cos 3x – 5\sin 3x\right).
\]
Question 3(vi):
Find the second order derivative of \( y = \text{log}(\text{log}\, x) \).
Solution:
We are given
\[
y = \text{log}(\text{log}\, x).
\]
First, we differentiate \( y \) with respect to \( x \). Using the chain rule:
\[
y’ = \frac{1}{\text{log}\, x} \cdot \frac{d}{dx}(\text{log}\, x)
= \frac{1}{\text{log}\, x} \cdot \frac{1}{x}
= \frac{1}{x\,\text{log}\, x}.
\]
Next, we differentiate \( y’ \) to find the second derivative. Write:
\[
y’ = \frac{1}{x\,\text{log}\, x}.
\]
Differentiating using the product rule (or quotient rule), we have:
Let
\[
f(x) = x^{-1} \quad \text{and} \quad g(x) = (\text{log}\, x)^{-1}.
\]
Then,
\[
f'(x) = -x^{-2},
\]
and by the chain rule,
\[
g'(x) = -\frac{1}{(\text{log}\, x)^2}\cdot\frac{1}{x} = -\frac{1}{x\,(\text{log}\, x)^2}.
\]
Applying the product rule:
\[
y” = f'(x)g(x) + f(x)g'(x)
= \left(-\frac{1}{x^2}\right)\frac{1}{\text{log}\, x} + \frac{1}{x}\left(-\frac{1}{x\,(\text{log}\, x)^2}\right).
\]
Simplify the expression:
\[
y” = -\frac{1}{x^2\,\text{log}\, x} – \frac{1}{x^2\,(\text{log}\, x)^2}
= -\frac{\text{log}\, x + 1}{x^2\,(\text{log}\, x)^2}.
\]
Final Answer:
\[
y” = -\frac{1+\text{log}\, x}{x^2\,(\text{log}\, x)^2}.
\]
Question 3(vii):
Find the second order derivative of \( y = \frac{\log x}{x} \).
Solution:
We begin by rewriting the function as:
\[
y = \log x \cdot x^{-1}.
\]
Differentiating using the product rule:
\[
y’ = \frac{d}{dx}(\log x)\cdot x^{-1} + \log x\cdot \frac{d}{dx}(x^{-1})
= \frac{1}{x}\cdot x^{-1} – \log x\cdot x^{-2}
= \frac{1-\log x}{x^2}.
\]
Next, differentiate \( y’ \) to obtain the second derivative. Express \( y’ \) as:
\[
y’ = (1-\log x)x^{-2}.
\]
Applying the product rule:
\[
y” = \frac{d}{dx}(1-\log x)\cdot x^{-2} + (1-\log x)\cdot \frac{d}{dx}(x^{-2}).
\]
We have:
\[
\frac{d}{dx}(1-\log x) = -\frac{1}{x} \quad \text{and} \quad \frac{d}{dx}(x^{-2}) = -2x^{-3}.
\]
Thus,
\[
y” = \left(-\frac{1}{x}\right)x^{-2} + (1-\log x)\cdot\left(-2x^{-3}\right)
= -\frac{1}{x^3} – \frac{2(1-\log x)}{x^3}.
\]
Simplify the numerator:
\[
y” = -\frac{1+2-2\log x}{x^3}
= \frac{2\log x-3}{x^3}.
\]
Final Answer:
\[
y” = \frac{2\log x-3}{x^3}.
\]
Question 3(viii):
Find the second order derivative of \( y = x^2 \text{log}|\cos x| \).
Solution:
We are given:
\[
y = x^2\,\text{log}|\cos x|.
\]
First, differentiate using the product rule:
\[
y’ = \frac{d}{dx}\left(x^2\right) \text{log}|\cos x| + x^2\,\frac{d}{dx}\left(\text{log}|\cos x|\right).
\]
Since
\[
\frac{d}{dx}(x^2)=2x,
\]
and noting that
\[
\frac{d}{dx}\left(\text{log}|\cos x|\right) = \frac{-\sin x}{\cos x}=-\tan x,
\]
we obtain:
\[
y’ = 2x\,\text{log}|\cos x| – x^2\tan x.
\]
Next, differentiate \( y’ \) to find \( y” \). Differentiate term by term:
For the first term:
\[
\frac{d}{dx}\left(2x\,\text{log}|\cos x|\right) = 2\,\text{log}|\cos x| + 2x\left(-\tan x\right)
= 2\,\text{log}|\cos x| – 2x\tan x.
\]
For the second term:
\[
\frac{d}{dx}\left(-x^2\tan x\right) = -\left(2x\tan x + x^2\sec^2 x\right).
\]
Combining these results:
\[
y” = \left(2\,\text{log}|\cos x| – 2x\tan x\right) – \left(2x\tan x + x^2\sec^2 x\right)
= 2\,\text{log}|\cos x| – 4x\tan x – x^2\sec^2 x.
\]
Final Answer:
\[
y” = 2\,\text{log}|\cos x| – 4x\tan x – x^2\sec^2 x.
\]
Question 3(ix):
Find the second order derivative of \( y = \frac{2x+1}{2x+3} \).
Solution:
First, we rewrite the function using the hint:
\[
y = \frac{2x+1}{2x+3} = 1 – \frac{2}{2x+3}.
\]
Now, differentiate \( y \) with respect to \( x \).
**Step 1: First Derivative**
Since
\[
y = 1 – 2(2x+3)^{-1},
\]
we differentiate:
\[
y’ = -2 \cdot \left(-1\right)(2x+3)^{-2}\cdot 2 = \frac{4}{(2x+3)^2}.
\]
**Step 2: Second Derivative**
Differentiate \( y’ = 4(2x+3)^{-2} \):
\[
y” = 4 \cdot (-2)(2x+3)^{-3}\cdot 2 = -\frac{16}{(2x+3)^3}.
\]
Final Answer:
\[
y” = -\frac{16}{(2x+3)^3}.
\]
Question 4(i):
Find the second derivative of \( y = \sec(ax) \).
Solution:
We start with
\[
y = \sec(ax) = \frac{1}{\cos(ax)}.
\]
First, differentiate \( y \) with respect to \( x \) using the chain rule:
\[
y’ = a\,\sec(ax)\tan(ax).
\]
Next, differentiate \( y’ \) to obtain the second derivative. Write:
\[
y’ = a\,\sec(ax)\tan(ax).
\]
Differentiating using the product rule:
\[
y” = a\,\frac{d}{dx}\Big[\sec(ax)\tan(ax)\Big]
= a\left[\sec(ax)\tan(ax)\cdot a\tan(ax) + \sec(ax)\cdot a\sec^2(ax)\right].
\]
This simplifies to:
\[
y” = a^2\,\sec(ax)\left[\tan^2(ax) + \sec^2(ax)\right].
\]
Recall that \( \tan^2(ax) = \sec^2(ax)-1 \). Hence,
\[
\tan^2(ax) + \sec^2(ax) = (\sec^2(ax)-1) + \sec^2(ax)=2\sec^2(ax)-1.
\]
Therefore, the second derivative becomes:
\[
y” = a^2\,\sec(ax)\left(2\sec^2(ax)-1\right).
\]
Final Answer:
\[
y” = a^2\,\sec(ax)\left(2\sec^2(ax)-1\right).
\]
Question:
4. (ii) Find the second derivative of \( \cot (1-2 x) \).
Solution:
Let
\[
y=\cot (1-2 x).
\]
First, we differentiate using the chain rule. Recall that
\[
\frac{d}{dx}\left(\cot u\right)=-\mathrm{cosec}^{2}u\cdot\frac{du}{dx},
\]
where \( u=1-2x \) and \( \frac{du}{dx}=-2 \). Thus, the first derivative is
\[
\frac{dy}{dx}=-\mathrm{cosec}^{2}(1-2x)\cdot(-2)=2\,\mathrm{cosec}^{2}(1-2x).
\]
Next, we differentiate the first derivative. We differentiate
\[
\frac{dy}{dx}=2\,\mathrm{cosec}^{2}(1-2x)
\]
with respect to \( x \). Again, applying the chain rule along with the derivative
\[
\frac{d}{du}(\mathrm{cosec}^{2} u)=-2\,\mathrm{cosec}^{2}u\cot u,
\]
and noting that \( \frac{du}{dx}=-2 \), we have:
\[
\frac{d^{2}y}{dx^{2}}=2\cdot\frac{d}{dx}\left(\mathrm{cosec}^{2}(1-2x)\right)
=2\cdot\left[-2\,\mathrm{cosec}^{2}(1-2x)\cot(1-2x)\cdot(-2)\right].
\]
Simplify the constants:
\[
2\cdot\left[-2\cdot(-2)\,\mathrm{cosec}^{2}(1-2x)\cot(1-2x)\right]
=2\cdot(4\,\mathrm{cosec}^{2}(1-2x)\cot(1-2x))
=8\,\mathrm{cosec}^{2}(1-2x)\cot(1-2x).
\]
Final Answer:
\( 8\,\mathrm{cosec}^{2}(1-2x)\cot(1-2x) \).
Question 4(iii):
Find the second derivative of \( y = \sin 3x \cos 5x \).
Solution:
We start by expressing the function using the product-to-sum formula:
\[
\sin 3x \cos 5x = \frac{1}{2}\Big[\sin(3x+5x) + \sin(3x-5x)\Big]
= \frac{1}{2}\Big[\sin 8x + \sin(-2x)\Big]
= \frac{1}{2}\Big[\sin 8x – \sin 2x\Big].
\]
Thus, we have:
\[
y = \frac{1}{2}\left[\sin 8x – \sin 2x\right].
\]
**Step 1: First Derivative**
Differentiating term by term:
\[
y’ = \frac{1}{2}\left[8\cos 8x – 2\cos 2x\right]
= 4\cos 8x – \cos 2x.
\]
**Step 2: Second Derivative**
Differentiate \( y’ \) term by term:
\[
y” = \frac{d}{dx}\left(4\cos 8x\right) – \frac{d}{dx}\left(\cos 2x\right)
= -32\sin 8x + 2\sin 2x.
\]
Final Answer:
\[
y” = -32\sin 8x + 2\sin 2x.
\]
Question:
4. (iv) Find the second derivative of \( \sin^{3} x \).
Solution:
We start by using the identity:
\[
\sin^{3} x = \frac{1}{4}\Bigl(3\sin x-\sin 3x\Bigr).
\]
Differentiating with respect to \( x \), the first derivative is:
\[
\frac{d}{dx}\Bigl(\sin^{3} x\Bigr)=\frac{1}{4}\Bigl(3\cos x-3\cos 3x\Bigr)
=\frac{3}{4}\Bigl(\cos x-\cos 3x\Bigr).
\]
Differentiating once more to get the second derivative:
\[
\frac{d^{2}}{dx^{2}}\Bigl(\sin^{3} x\Bigr)=\frac{3}{4}\Bigl(-\sin x+3\sin 3x\Bigr)
=\frac{3}{4}\Bigl(3\sin 3x-\sin x\Bigr).
\]
Final Answer:
\( \frac{3}{4}\Bigl(3\sin 3x-\sin x\Bigr) \).
Question 4(v):
Find the second derivative of \( y = \cos\left(2x^2-1\right) \).
Solution:
We begin with
\[
y = \cos\left(2x^2-1\right).
\]
**Step 1: First Derivative**
Using the chain rule, we differentiate:
\[
y’ = -\sin\left(2x^2-1\right)\cdot \frac{d}{dx}\left(2x^2-1\right)
= -\sin\left(2x^2-1\right)\cdot 4x
= -4x\,\sin\left(2x^2-1\right).
\]
**Step 2: Second Derivative**
Differentiate \( y’ = -4x\,\sin\left(2x^2-1\right) \) using the product rule:
\[
y” = \frac{d}{dx}\left(-4x\right)\sin\left(2x^2-1\right) + (-4x)\frac{d}{dx}\left(\sin\left(2x^2-1\right)\right).
\]
We have:
\[
\frac{d}{dx}\left(-4x\right) = -4,
\]
and
\[
\frac{d}{dx}\left(\sin\left(2x^2-1\right)\right)
= \cos\left(2x^2-1\right)\cdot \frac{d}{dx}\left(2x^2-1\right)
= \cos\left(2x^2-1\right)\cdot 4x.
\]
Thus,
\[
y” = -4\,\sin\left(2x^2-1\right) + (-4x)\cdot\left(4x\,\cos\left(2x^2-1\right)\right)
= -4\,\sin\left(2x^2-1\right) – 16x^2\,\cos\left(2x^2-1\right).
\]
Final Answer:
\[
y” = -4\,\sin\left(2x^2-1\right) – 16x^2\,\cos\left(2x^2-1\right).
\]
Question:
4(vi) Find the second derivative of \( y=\sqrt{1-x^2} \).
Solution:
We have
\[
y=\sqrt{1-x^2}=(1-x^2)^{\frac{1}{2}}.
\]
Differentiating with respect to \( x \):
\[
\frac{dy}{dx}=\frac{1}{2}(1-x^2)^{-\frac{1}{2}}(-2x)=-\frac{x}{\sqrt{1-x^2}}.
\]
Differentiating again, we write
\[
\frac{dy}{dx}=-x(1-x^2)^{-\frac{1}{2}}.
\]
Using the product rule with \( u=-x \) and \( v=(1-x^2)^{-\frac{1}{2}} \):
\[
u’=-1, \quad v’=\frac{d}{dx}\left((1-x^2)^{-\frac{1}{2}}\right)
= -\frac{1}{2}(1-x^2)^{-\frac{3}{2}}(-2x)
= x(1-x^2)^{-\frac{3}{2}}.
\]
Thus,
\[
\frac{d^2y}{dx^2}=u’v+uv’
=-1\cdot(1-x^2)^{-\frac{1}{2}}+(-x)\cdot\left[x(1-x^2)^{-\frac{3}{2}}\right].
\]
Simplifying:
\[
\frac{d^2y}{dx^2}=-\frac{1}{(1-x^2)^{\frac{1}{2}}}-\frac{x^2}{(1-x^2)^{\frac{3}{2}}}
= -\frac{(1-x^2)+x^2}{(1-x^2)^{\frac{3}{2}}}
= -\frac{1}{(1-x^2)^{\frac{3}{2}}}.
\]
Final Answer:
\[
\frac{d^2y}{dx^2}=-\frac{1}{(1-x^2)^{\frac{3}{2}}}.
\]
Question:
5(i) If \( y=\cos^{-1} x \), find \(\frac{d^2y}{dx^2}\) in terms of \( y \) alone.
Solution:
Given
\[
y=\cos^{-1}x,
\]
we have
\[
\frac{dy}{dx}=-\frac{1}{\sqrt{1-x^2}}.
\]
Since \( y=\cos^{-1}x \) implies \( x=\cos y \) and \( \sqrt{1-x^2}=\sin y \) (because \(0\le y\le\pi\)), it follows that
\[
\frac{dy}{dx}=-\frac{1}{\sin y}.
\]
Differentiating with respect to \( x \) using the chain rule:
\[
\frac{d^2y}{dx^2}=\frac{d}{dy}\left(-\frac{1}{\sin y}\right)\frac{dy}{dx}.
\]
First, differentiate with respect to \( y \):
\[
\frac{d}{dy}\left(-\frac{1}{\sin y}\right)=\frac{\cos y}{\sin^2 y}.
\]
Then, substituting \(\frac{dy}{dx}=-\frac{1}{\sin y}\):
\[
\frac{d^2y}{dx^2}=\frac{\cos y}{\sin^2 y}\left(-\frac{1}{\sin y}\right)
= -\frac{\cos y}{\sin^3 y}.
\]
Recognizing that
\[
\frac{\cos y}{\sin^3 y}=\cot y \, \mathrm{cosec}^2 y,
\]
we obtain
\[
\frac{d^2y}{dx^2}=-\mathrm{cosec}^2 y\, \cot y.
\]
Final Answer:
\[
\frac{d^2y}{dx^2}=-\mathrm{cosec}^2 y\, \cot y.
\]
Question:
5(ii) If \( y=\log\left(\frac{x^2}{e^x}\right) \), find \(\frac{d^2y}{dx^2}\).
Solution:
We can rewrite the function as:
\[
y=\log\left(\frac{x^2}{e^x}\right)=\log(x^2)-\log(e^x)=2\log x-x.
\]
Differentiating with respect to \( x \):
\[
\frac{dy}{dx}=\frac{2}{x}-1.
\]
Differentiating again:
\[
\frac{d^2y}{dx^2}=-\frac{2}{x^2}.
\]
Final Answer:
\[
\frac{d^2y}{dx^2}=-\frac{2}{x^2}.
\]
Question:
6(i) If \( y=\cot x \), prove that \( \frac{d^2 y}{dx^2}+2 y \frac{dy}{dx}=0 \).
Solution:
Given
\[
y=\cot x,
\]
we differentiate to obtain the first derivative:
\[
\frac{dy}{dx}=-\mathrm{cosec}^2 x.
\]
Differentiating again for the second derivative:
\[
\frac{d^2y}{dx^2}=-\frac{d}{dx}\left(\mathrm{cosec}^2 x\right).
\]
Using the chain rule and knowing that
\[
\frac{d}{dx}(\mathrm{cosec} x)=-\mathrm{cosec} x\,\cot x,
\]
we have
\[
\frac{d}{dx}\left(\mathrm{cosec}^2 x\right)=2\,\mathrm{cosec} x\left(-\mathrm{cosec} x\,\cot x\right)
= -2\,\mathrm{cosec}^2 x\,\cot x.
\]
Hence,
\[
\frac{d^2y}{dx^2}=-\left(-2\,\mathrm{cosec}^2 x\,\cot x\right)
= 2\,\mathrm{cosec}^2 x\,\cot x.
\]
Next, calculate
\[
2y\frac{dy}{dx}=2\cot x\left(-\mathrm{cosec}^2 x\right)
= -2\,\mathrm{cosec}^2 x\,\cot x.
\]
Adding the two results:
\[
\frac{d^2y}{dx^2}+2y\frac{dy}{dx}
= 2\,\mathrm{cosec}^2 x\,\cot x – 2\,\mathrm{cosec}^2 x\,\cot x = 0.
\]
Final Answer:
\[
\frac{d^2y}{dx^2}+2y\frac{dy}{dx}=0.
\]
Question:
6(ii) If \( y=5\cos x-3\sin x \), prove that \( \frac{d^2 y}{dx^2}+y=0 \).
Solution:
Given
\[
y=5\cos x-3\sin x,
\]
we differentiate to obtain the first derivative:
\[
\frac{dy}{dx}=-5\sin x-3\cos x.
\]
Differentiating again, the second derivative is:
\[
\frac{d^2y}{dx^2}=-5\cos x+3\sin x.
\]
Now, adding \( y \) to the second derivative:
\[
\frac{d^2y}{dx^2}+y=(-5\cos x+3\sin x)+(5\cos x-3\sin x)=0.
\]
Thus, we have proved that
\[
\frac{d^2 y}{dx^2}+y=0.
\]
Final Answer:
\[
\frac{d^2y}{dx^2}+y=0.
\]
Question:
7(i) If \( y=x+\tan x \), prove that \(\cos^2 x\cdot \frac{d^2y}{dx^2}-2y+2x=0\).
Solution:
We are given
\[
y=x+\tan x.
\]
First, differentiate with respect to \( x \):
\[
\frac{dy}{dx}=1+\frac{d}{dx}(\tan x)=1+\sec^2 x.
\]
Next, differentiate the first derivative to find the second derivative:
\[
\frac{d^2y}{dx^2}=\frac{d}{dx}(1+\sec^2 x)=0+2\sec^2 x\,\frac{d}{dx}(\sec x).
\]
Since
\[
\frac{d}{dx}(\sec x)=\sec x\,\tan x,
\]
it follows that
\[
\frac{d^2y}{dx^2}=2\sec^2 x\cdot\sec x\,\tan x=2\sec^3 x\,\tan x.
\]
However, a simpler approach is to differentiate \(\sec^2 x\) directly:
\[
\frac{d}{dx}(\sec^2 x)=2\sec x\cdot \sec x\,\tan x=2\sec^2 x\,\tan x.
\]
Thus, we have
\[
\frac{d^2y}{dx^2}=2\sec^2 x\,\tan x.
\]
Now, consider the expression
\[
\cos^2 x\cdot \frac{d^2y}{dx^2}-2y+2x.
\]
Substitute the value of \(\frac{d^2y}{dx^2}\) and \(y\):
\[
\cos^2 x\cdot (2\sec^2 x\,\tan x)-2(x+\tan x)+2x.
\]
Note that \(\cos^2 x\,\sec^2 x=1\), so
\[
2\tan x-2x-2\tan x+2x=0.
\]
This confirms that
\[
\cos^2 x\cdot \frac{d^2y}{dx^2}-2y+2x=0.
\]
Final Answer:
\[
\cos^2 x\cdot \frac{d^2y}{dx^2}-2y+2x=0.
\]
Question:
7(ii) If \( y=\tan x+\sec x \), prove that \(\frac{d^2y}{dx^2}=\frac{\cos x}{(1-\sin x)^2}\).
Solution:
We start with
\[
y=\tan x+\sec x.
\]
Expressing in terms of sine and cosine:
\[
y=\frac{\sin x}{\cos x}+\frac{1}{\cos x}=\frac{1+\sin x}{\cos x}.
\]
Multiplying numerator and denominator by \(1-\sin x\):
\[
y=\frac{(1+\sin x)(1-\sin x)}{\cos x(1-\sin x)}
=\frac{1-\sin^2 x}{\cos x(1-\sin x)}
=\frac{\cos^2 x}{\cos x(1-\sin x)}
=\frac{\cos x}{1-\sin x}.
\]
Now, differentiate \( y=\frac{\cos x}{1-\sin x} \).
Let
\[
u=\cos x,\quad v=1-\sin x.
\]
Then, \( u’=-\sin x \) and \( v’=-\cos x \).
Using the quotient rule:
\[
\frac{dy}{dx}=\frac{u’v-u v’}{v^2}
=\frac{(-\sin x)(1-\sin x)-\cos x(-\cos x)}{(1-\sin x)^2}
=\frac{-\sin x(1-\sin x)+\cos^2 x}{(1-\sin x)^2}.
\]
Simplify the numerator using \(\cos^2 x=1-\sin^2 x\):
\[
-\sin x(1-\sin x)+\cos^2 x
=-\sin x+\sin^2 x+1-\sin^2 x
=1-\sin x.
\]
Thus,
\[
\frac{dy}{dx}=\frac{1-\sin x}{(1-\sin x)^2}
=\frac{1}{1-\sin x}.
\]
Next, differentiate \(\frac{dy}{dx}\) with respect to \( x \):
\[
\frac{dy}{dx}=(1-\sin x)^{-1}.
\]
Differentiating using the chain rule:
\[
\frac{d^2y}{dx^2}=-1\cdot(1-\sin x)^{-2}\cdot(-\cos x)
=\frac{\cos x}{(1-\sin x)^2}.
\]
Final Answer:
\[
\frac{d^2y}{dx^2}=\frac{\cos x}{(1-\sin x)^2}.
\]
Question:
8(i) If \( y=\sec x-\tan x \), prove that \(\cos x \cdot \frac{d^2y}{dx^2}=y^2\).
Solution:
We start with
\[
y=\sec x-\tan x.
\]
Differentiate to obtain the first derivative:
\[
\frac{dy}{dx}=\frac{d}{dx}(\sec x)-\frac{d}{dx}(\tan x)
=\sec x\,\tan x-\sec^2 x.
\]
Next, differentiate \(\frac{dy}{dx}\) to get the second derivative.
Differentiating \(\sec x\,\tan x\) using the product rule:
\[
\frac{d}{dx}(\sec x\,\tan x)
=\frac{d}{dx}(\sec x)\cdot\tan x+\sec x\cdot\frac{d}{dx}(\tan x)
=\sec x\,\tan x\cdot\tan x+\sec x\,\sec^2 x
=\sec x\,\tan^2 x+\sec^3 x.
\]
Differentiating \(-\sec^2 x\):
\[
\frac{d}{dx}(-\sec^2 x)
=-2\sec x\,\frac{d}{dx}(\sec x)
=-2\sec x\,( \sec x\,\tan x)
=-2\sec^2 x\,\tan x.
\]
Hence, the second derivative is:
\[
\frac{d^2y}{dx^2}=\sec x\,\tan^2 x+\sec^3 x-2\sec^2 x\,\tan x.
\]
Multiplying by \(\cos x\):
\[
\cos x\cdot\frac{d^2y}{dx^2}
=\cos x\left(\sec x\,\tan^2 x+\sec^3 x-2\sec^2 x\,\tan x\right).
\]
Noting that \(\cos x\,\sec x=1\), \(\cos x\,\sec^2 x=\sec x\), and \(\cos x\,\sec^3 x=\sec^2 x\), we have:
\[
\cos x\cdot\frac{d^2y}{dx^2}
=\tan^2 x+\sec^2 x-2\sec x\,\tan x.
\]
Now, observe that:
\[
y^2=(\sec x-\tan x)^2=\sec^2 x-2\sec x\,\tan x+\tan^2 x.
\]
Thus, we conclude:
\[
\cos x\cdot\frac{d^2y}{dx^2}=y^2.
\]
Final Answer:
\[
\cos x\cdot\frac{d^2y}{dx^2}=y^2.
\]
Question:
8(ii) If \( y=x+\cot x \), prove that \(\sin^2 x\cdot \frac{d^2y}{dx^2}-2y+2x=0\).
Solution:
We are given
\[
y=x+\cot x.
\]
First, differentiate \( y \) with respect to \( x \):
\[
\frac{dy}{dx}=1+\frac{d}{dx}(\cot x)
=1-\mathrm{cosec}^2 x.
\]
Next, differentiate the first derivative to obtain the second derivative.
Since
\[
\frac{d}{dx}(-\mathrm{cosec}^2 x)=2\,\mathrm{cosec}^2 x\,\cot x,
\]
it follows that
\[
\frac{d^2y}{dx^2}=2\,\mathrm{cosec}^2 x\,\cot x.
\]
Now, consider the expression:
\[
\sin^2 x\cdot \frac{d^2y}{dx^2}-2y+2x.
\]
Substitute \(\frac{d^2y}{dx^2}\) and \(y\):
\[
\sin^2 x\cdot \left(2\,\mathrm{cosec}^2 x\,\cot x\right)-2(x+\cot x)+2x.
\]
Since \(\sin^2 x\cdot \mathrm{cosec}^2 x=1\), the expression simplifies to:
\[
2\,\cot x-2x-2\,\cot x+2x=0.
\]
Thus, we have proved that:
\[
\sin^2 x\cdot \frac{d^2y}{dx^2}-2y+2x=0.
\]
Final Answer:
\[
\sin^2 x\cdot \frac{d^2y}{dx^2}-2y+2x=0.
\]
Question:
9(i) If \( y=a e^{mx}+b e^{-mx} \), prove that \( y_2 – m^2 y = 0 \).
Solution:
We are given
\[
y = a e^{mx} + b e^{-mx}.
\]
Differentiating with respect to \( x \):
\[
y_1 = \frac{dy}{dx} = a m e^{mx} – b m e^{-mx}.
\]
Differentiating again:
\[
y_2 = \frac{d^2y}{dx^2} = a m^2 e^{mx} + b m^2 e^{-mx}.
\]
Factor out \( m^2 \):
\[
y_2 = m^2 (a e^{mx} + b e^{-mx}) = m^2 y.
\]
Therefore,
\[
y_2 – m^2 y = 0.
\]
Final Answer:
\[
y_2 – m^2 y = 0.
\]
Question:
9(ii) If \( y = 500 e^{7x} + 600 e^{-7x} \), prove that \( \frac{d^2 y}{dx^2} = 49 y \).
Solution:
We are given
\[
y = 500 e^{7x} + 600 e^{-7x}.
\]
Differentiating with respect to \( x \):
\[
y’ = 500 \cdot 7 e^{7x} – 600 \cdot 7 e^{-7x} = 3500 e^{7x} – 4200 e^{-7x}.
\]
Differentiating again to find the second derivative:
\[
y” = 3500 \cdot 7 e^{7x} + 4200 \cdot 7 e^{-7x} = 24500 e^{7x} + 29400 e^{-7x}.
\]
Notice that:
\[
24500 e^{7x} = 49 \cdot 500 e^{7x} \quad \text{and} \quad 29400 e^{-7x} = 49 \cdot 600 e^{-7x}.
\]
Hence, we can write:
\[
y” = 49 \left( 500 e^{7x} + 600 e^{-7x} \right) = 49 y.
\]
Final Answer:
\( \frac{d^2 y}{dx^2} = 49 y \).
Question:
9(iii) If \( y = a e^{2x} + b e^{-x} \), prove that
\[
\frac{d^2 y}{dx^2} – \frac{dy}{dx} – 2y = 0.
\]
Solution:
Given
\[
y = a e^{2x} + b e^{-x},
\]
we differentiate with respect to \( x \) to find the first derivative:
\[
y’ = \frac{d}{dx}(a e^{2x} + b e^{-x}) = 2a e^{2x} – b e^{-x}.
\]
Differentiating again to obtain the second derivative:
\[
y” = \frac{d}{dx}(2a e^{2x} – b e^{-x}) = 4a e^{2x} + b e^{-x}.
\]
Now, consider the expression:
\[
y” – y’ – 2y.
\]
Substitute the expressions for \( y \), \( y’ \), and \( y” \):
\[
y” – y’ – 2y = \left(4a e^{2x} + b e^{-x}\right) – \left(2a e^{2x} – b e^{-x}\right) – 2\left(a e^{2x} + b e^{-x}\right).
\]
Simplify step-by-step:
\[
= 4a e^{2x} + b e^{-x} – 2a e^{2x} + b e^{-x} – 2a e^{2x} – 2b e^{-x},
\]
\[
= \left(4a e^{2x} – 2a e^{2x} – 2a e^{2x}\right) + \left(b e^{-x} + b e^{-x} – 2b e^{-x}\right),
\]
\[
= 0 + 0 = 0.
\]
Hence, we have shown that:
\[
\frac{d^2 y}{dx^2} – \frac{dy}{dx} – 2y = 0.
\]
Final Answer:
\( \frac{d^2 y}{dx^2} – \frac{dy}{dx} – 2y = 0 \).
Question:
10(i) If \( y = \mathrm{A} \sin x + \mathrm{B} \cos x \), prove that
\[
\frac{d^2 y}{dx^2} + y = 0.
\]
Solution:
We start with
\[
y = \mathrm{A} \sin x + \mathrm{B} \cos x.
\]
Differentiating with respect to \( x \), we obtain the first derivative:
\[
y’ = \mathrm{A} \cos x – \mathrm{B} \sin x.
\]
Differentiating again gives the second derivative:
\[
y” = -\mathrm{A} \sin x – \mathrm{B} \cos x.
\]
Now, adding \( y \) to \( y” \) we have:
\[
y” + y = \left(-\mathrm{A} \sin x – \mathrm{B} \cos x\right) + \left(\mathrm{A} \sin x + \mathrm{B} \cos x\right) = 0.
\]
Final Answer:
\( \frac{d^2 y}{dx^2} + y = 0 \).
Question:
10(ii) If \( y = \mathrm{A} \cos nx + \mathrm{B} \sin nx \), show that
\[
\frac{d^2 y}{dx^2} + n^2 y = 0.
\]
Solution:
We start with
\[
y = \mathrm{A} \cos nx + \mathrm{B} \sin nx.
\]
Differentiating with respect to \( x \) gives:
\[
y’ = -\mathrm{A} n \sin nx + \mathrm{B} n \cos nx.
\]
Differentiating once more to obtain the second derivative:
\[
y” = -\mathrm{A} n^2 \cos nx – \mathrm{B} n^2 \sin nx.
\]
This can be written as:
\[
y” = -n^2\left(\mathrm{A} \cos nx + \mathrm{B} \sin nx\right) = -n^2 y.
\]
Rearranging the equation, we get:
\[
y” + n^2 y = 0.
\]
Final Answer:
\( \frac{d^2 y}{dx^2} + n^2 y = 0 \).
Question:
11(i) If \( y=\tan^{-1} x \), prove that
\[
\left(1+x^{2}\right)\frac{d^2 y}{dx^2}+2x\frac{dy}{dx}=0.
\]
Solution:
Consider the function
\[
y=\tan^{-1} x.
\]
Differentiating, we have
\[
\frac{dy}{dx}=\frac{1}{1+x^2}.
\]
Differentiating once more yields
\[
\frac{d^2 y}{dx^2}=-\frac{2x}{(1+x^2)^2}.
\]
Multiplying the second derivative by \(1+x^2\) and adding \(2x\) times the first derivative, we obtain:
\[
\left(1+x^{2}\right)\frac{d^2 y}{dx^2}+2x\frac{dy}{dx}
= \left(1+x^2\right)\left(-\frac{2x}{(1+x^2)^2}\right)+2x\left(\frac{1}{1+x^2}\right).
\]
Simplifying,
\[
= -\frac{2x}{1+x^2}+ \frac{2x}{1+x^2} = 0.
\]
Final Answer:
\[
\left(1+x^{2}\right)\frac{d^2 y}{dx^2}+2x\frac{dy}{dx}=0.
\]
Question:
11(ii) If \( y=\sin^{-1} x \), prove that
\[
\left(1-x^2\right)\frac{d^2 y}{dx^2}-x\frac{dy}{dx}=0.
\]
Solution:
Consider the function
\[
y=\sin^{-1} x.
\]
Differentiating with respect to \( x \), we have
\[
\frac{dy}{dx}=\frac{1}{\sqrt{1-x^2}}.
\]
Differentiating once more, we obtain
\[
\frac{d^2 y}{dx^2}=\frac{d}{dx}\left(\frac{1}{\sqrt{1-x^2}}\right)
=\frac{x}{\left(1-x^2\right)^{3/2}}.
\]
Now, multiplying the second derivative by \(1-x^2\) and subtracting \(x\) times the first derivative, we get:
\[
\left(1-x^2\right)\frac{d^2 y}{dx^2}-x\frac{dy}{dx}
= \left(1-x^2\right)\left(\frac{x}{\left(1-x^2\right)^{3/2}}\right)
-x\left(\frac{1}{\sqrt{1-x^2}}\right).
\]
Simplifying,
\[
=\frac{x}{\sqrt{1-x^2}}-\frac{x}{\sqrt{1-x^2}}=0.
\]
Final Answer:
\[
\left(1-x^2\right)\frac{d^2 y}{dx^2}-x\frac{dy}{dx}=0.
\]
Question:
12(i) If \( y=\sin (\log x) \), prove that
\[
x^{2}\frac{d^{2} y}{dx^{2}}+x\frac{dy}{dx}+y=0.
\]
Solution:
Consider
\[
y=\sin (\log x).
\]
First, differentiate with respect to \( x \):
\[
\frac{dy}{dx}=\cos (\log x)\cdot \frac{1}{x}=\frac{\cos (\log x)}{x}.
\]
Next, differentiate again:
\[
\frac{d^{2}y}{dx^{2}}=\frac{d}{dx}\left(\frac{\cos (\log x)}{x}\right).
\]
Using the quotient rule,
\[
\frac{d^{2}y}{dx^{2}}=\frac{-\sin (\log x)\cdot\frac{1}{x}\cdot x-\cos (\log x)\cdot 1}{x^{2}}
=\frac{-\sin (\log x)-\cos (\log x)}{x^{2}}.
\]
However, on careful re-evaluation of the differentiation, we note that the derivative of \(\cos (\log x)\) is
\[
-\sin (\log x)\cdot \frac{1}{x},
\]
so applying the quotient rule correctly:
\[
\frac{d^{2}y}{dx^{2}} = \frac{x\cdot\left(-\sin (\log x)\cdot \frac{1}{x}\right)-\cos (\log x)}{x^{2}}
= \frac{-\sin (\log x)-\cos (\log x)}{x^{2}}.
\]
Multiplying by \(x^2\) and adding \(x\frac{dy}{dx}+y\), we get:
\[
x^{2}\frac{d^{2}y}{dx^{2}}+x\frac{dy}{dx}+y
= \left[-\sin (\log x)-\cos (\log x)\right] + \cos (\log x)+\sin (\log x)=0.
\]
Final Answer:
\[
x^{2}\frac{d^{2} y}{dx^{2}}+x\frac{dy}{dx}+y=0.
\]
Question:
12(ii) If \( y=3\cos (\log x)+4\sin (\log x) \), prove that
\[
x^{2}\frac{d^{2}y}{dx^{2}}+x\frac{dy}{dx}+y=0.
\]
Solution:
Consider
\[
y=3\cos (\log x)+4\sin (\log x).
\]
Differentiating with respect to \( x \), we have
\[
\frac{dy}{dx}=\frac{-3\sin (\log x)+4\cos (\log x)}{x}.
\]
Differentiating again using the quotient rule yields
\[
\frac{d^{2}y}{dx^{2}}=\frac{x\left[\frac{-3\cos (\log x)-4\sin (\log x)}{x}\right]-\left(-3\sin (\log x)+4\cos (\log x)\right)}{x^{2}},
\]
which simplifies to
\[
\frac{d^{2}y}{dx^{2}}=\frac{-3\cos (\log x)-4\sin (\log x)+3\sin (\log x)-4\cos (\log x)}{x^{2}}
=\frac{-7\cos (\log x)-\sin (\log x)}{x^{2}}.
\]
Now, multiply the second derivative by \( x^2 \):
\[
x^2\frac{d^{2}y}{dx^{2}}=-7\cos (\log x)-\sin (\log x).
\]
Also, multiplying the first derivative by \( x \) gives:
\[
x\frac{dy}{dx}=-3\sin (\log x)+4\cos (\log x).
\]
Adding these results to \( y \) we obtain:
\[
x^2\frac{d^{2}y}{dx^{2}}+x\frac{dy}{dx}+y = \left[-7\cos (\log x)-\sin (\log x)\right] +\left[-3\sin (\log x)+4\cos (\log x)\right] +\left[3\cos (\log x)+4\sin (\log x)\right].
\]
Grouping like terms, the coefficients of \(\cos (\log x)\) add up as:
\[
-7+4+3=0,
\]
and those of \(\sin (\log x)\) add up as:
\[
-1-3+4=0.
\]
Hence,
\[
x^2\frac{d^{2}y}{dx^{2}}+x\frac{dy}{dx}+y=0.
\]
Final Answer:
\[
x^{2}\frac{d^{2}y}{dx^{2}}+x\frac{dy}{dx}+y=0.
\]
Question:
13. If \( y=x\cos x \), prove that
\[
x^{2}\frac{d^{2} y}{dx^{2}}-2x\frac{dy}{dx}+\left(2+x^{2}\right)y=0.
\]
Solution:
Consider the function
\[
y=x\cos x.
\]
Differentiating with respect to \( x \):
\[
\frac{dy}{dx}=\cos x – x\sin x.
\]
Differentiating again, we have:
\[
\frac{d^{2}y}{dx^{2}}=-\sin x – \left(\sin x + x\cos x\right)
= -2\sin x – x\cos x.
\]
Now, compute each term of the given expression:
\[
x^2\frac{d^{2}y}{dx^{2}}=x^2\left(-2\sin x – x\cos x\right)
= -2x^2\sin x – x^3\cos x,
\]
\[
-2x\frac{dy}{dx}=-2x\left(\cos x – x\sin x\right)
= -2x\cos x + 2x^2\sin x,
\]
\[
\left(2+x^2\right)y=\left(2+x^2\right)(x\cos x)
= 2x\cos x + x^3\cos x.
\]
Adding these three results:
\[
\begin{aligned}
&\quad\, x^2\frac{d^{2}y}{dx^{2}}-2x\frac{dy}{dx}+\left(2+x^2\right)y\\[1mm]
&=\left[-2x^2\sin x – x^3\cos x\right] +\left[-2x\cos x + 2x^2\sin x\right]
+\left[2x\cos x + x^3\cos x\right]\\[1mm]
&=\left(-2x^2\sin x+2x^2\sin x\right) +\left(-x^3\cos x+x^3\cos x\right)
+\left(-2x\cos x+2x\cos x\right)\\[1mm]
&=0.
\end{aligned}
\]
Hence, the given differential equation is verified.
Final Answer:
\[
x^{2}\frac{d^{2} y}{dx^{2}}-2x\frac{dy}{dx}+\left(2+x^{2}\right)y=0.
\]
Question:
14.(i) If \( y = \left(\cos^{-1} x\right)^2 \), prove that \(\left(1-x^{2}\right) y_{2} – x y_{1} = 2\).
Solution:
Let
\[
u = \cos^{-1} x \quad \text{so that} \quad y = u^2.
\]
Then,
\[
\frac{du}{dx} = -\frac{1}{\sqrt{1-x^2}},
\]
and by the chain rule the first derivative is
\[
y_{1} = \frac{dy}{dx} = 2u\,\frac{du}{dx} = -\frac{2\cos^{-1} x}{\sqrt{1-x^2}}.
\]
Differentiating \( y_{1} = -2\cos^{-1} x\,(1-x^2)^{-1/2} \) with respect to \( x \) using the product rule:
\[
y_{2} = \frac{d}{dx}\left(-2\cos^{-1} x\,(1-x^2)^{-1/2}\right)
= -2\left[\frac{d}{dx}(\cos^{-1} x)\,(1-x^2)^{-1/2} + \cos^{-1} x\,\frac{d}{dx}\left((1-x^2)^{-1/2}\right)\right].
\]
We already have
\[
\frac{d}{dx}(\cos^{-1} x) = -\frac{1}{\sqrt{1-x^2}},
\]
and differentiating \((1-x^2)^{-1/2}\) yields
\[
\frac{d}{dx}\left((1-x^2)^{-1/2}\right) = \frac{x}{(1-x^2)^{3/2}}.
\]
Therefore,
\[
y_{2} = -2\left[-\frac{1}{\sqrt{1-x^2}}\,(1-x^2)^{-1/2} + \cos^{-1} x\,\frac{x}{(1-x^2)^{3/2}}\right].
\]
Simplifying the first term:
\[
-\frac{1}{\sqrt{1-x^2}}\,(1-x^2)^{-1/2} = -\frac{1}{1-x^2},
\]
so that
\[
y_{2} = -2\left[-\frac{1}{1-x^2} + \frac{x\cos^{-1} x}{(1-x^2)^{3/2}}\right]
= 2\left[\frac{1}{1-x^2} – \frac{x\cos^{-1} x}{(1-x^2)^{3/2}}\right].
\]
Multiply \( y_{2} \) by \( (1-x^2) \):
\[
(1-x^2)y_{2} = 2\left[1 – \frac{x\cos^{-1} x}{\sqrt{1-x^2}}\right].
\]
Next, compute the term involving \( y_{1} \):
\[
-xy_{1} = -x\left(-\frac{2\cos^{-1} x}{\sqrt{1-x^2}}\right)
= \frac{2x\cos^{-1} x}{\sqrt{1-x^2}}.
\]
Adding these two expressions, we have
\[
\left(1-x^{2}\right)y_{2} – x y_{1} = 2\left[1 – \frac{x\cos^{-1} x}{\sqrt{1-x^2}}\right] + \frac{2x\cos^{-1} x}{\sqrt{1-x^2}} = 2.
\]
Final Answer:
\(\left(1-x^{2}\right)y_{2} – x y_{1} = 2\).
Question:
14.(ii) If \( y = \left(\tan^{-1} x\right)^2 \), prove that \(\left(x^{2}+1\right)^{2} \frac{d^{2} y}{d x^{2}} + 2x\left(x^{2}+1\right) \frac{d y}{d x} = 2\).
Solution:
Let
\[
u = \tan^{-1} x \quad \text{so that} \quad y = u^2.
\]
Then, the first derivative is
\[
\frac{dy}{dx} = 2u\,\frac{du}{dx} = 2\tan^{-1} x \cdot \frac{1}{1+x^2} = \frac{2\tan^{-1} x}{1+x^2}.
\]
Differentiating \(\frac{dy}{dx} = 2\tan^{-1} x\,(1+x^2)^{-1}\) using the product rule, we have:
\[
\frac{d^2y}{dx^2} = 2\left[\frac{d}{dx}\left(\tan^{-1} x\right)(1+x^2)^{-1} + \tan^{-1} x\,\frac{d}{dx}\left((1+x^2)^{-1}\right)\right].
\]
We know that
\[
\frac{d}{dx}\left(\tan^{-1} x\right) = \frac{1}{1+x^2},
\]
and
\[
\frac{d}{dx}\left((1+x^2)^{-1}\right) = -\frac{2x}{(1+x^2)^2}.
\]
Thus,
\[
\frac{d^2y}{dx^2} = 2\left[\frac{1}{1+x^2}\,(1+x^2)^{-1} – \tan^{-1} x\,\frac{2x}{(1+x^2)^2}\right]
= 2\left[\frac{1}{(1+x^2)^2} – \frac{2x\,\tan^{-1} x}{(1+x^2)^2}\right].
\]
Hence,
\[
\frac{d^2y}{dx^2} = \frac{2 – 4x\,\tan^{-1} x}{(1+x^2)^2}.
\]
Multiplying by \(\left(x^{2}+1\right)^{2}\), we obtain:
\[
\left(x^{2}+1\right)^{2} \frac{d^2y}{dx^2} = 2 – 4x\,\tan^{-1} x.
\]
Next, we have:
\[
2x\left(x^{2}+1\right) \frac{dy}{dx} = 2x\left(x^{2}+1\right) \cdot \frac{2\tan^{-1} x}{1+x^2} = 4x\,\tan^{-1} x.
\]
Adding these two expressions gives:
\[
\left(x^{2}+1\right)^{2} \frac{d^2y}{dx^2} + 2x\left(x^{2}+1\right) \frac{dy}{dx} = \left(2 – 4x\,\tan^{-1} x\right) + 4x\,\tan^{-1} x = 2.
\]
Final Answer:
\(\left(x^{2}+1\right)^{2} \frac{d^2y}{dx^2} + 2x\left(x^{2}+1\right) \frac{dy}{dx} = 2\).
Question:
15.(i) If \( y=\log \left(x+\sqrt{x^{2}+1}\right) \), prove that \(\left(x^{2}+1\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=0\).
Solution:
We begin with
\[
y=\log\left(x+\sqrt{x^{2}+1}\right).
\]
Recognize that
\[
y=\sinh^{-1}x,
\]
and it is well-known that
\[
\frac{d}{dx}\left(\sinh^{-1}x\right)=\frac{1}{\sqrt{x^{2}+1}}.
\]
Hence,
\[
\frac{dy}{dx}=\frac{1}{\sqrt{x^{2}+1}}.
\]
Differentiating \( \frac{dy}{dx}=\left(x^{2}+1\right)^{-1/2} \) with respect to \( x \):
\[
\frac{d^{2}y}{dx^{2}}=\frac{d}{dx}\left[\left(x^{2}+1\right)^{-1/2}\right]
= -\frac{1}{2}\left(x^{2}+1\right)^{-3/2}\cdot 2x
= -\frac{x}{\left(x^{2}+1\right)^{3/2}}.
\]
Now, compute
\[
\left(x^{2}+1\right)\frac{d^{2}y}{dx^{2}}+x\frac{dy}{dx}
= \left(x^{2}+1\right)\left(-\frac{x}{\left(x^{2}+1\right)^{3/2}}\right)
+ x\left(\frac{1}{\sqrt{x^{2}+1}}\right).
\]
Simplify the first term:
\[
\left(x^{2}+1\right)\left(-\frac{x}{\left(x^{2}+1\right)^{3/2}}\right)
= -\frac{x}{\sqrt{x^{2}+1}}.
\]
The second term is:
\[
x\left(\frac{1}{\sqrt{x^{2}+1}}\right)
= \frac{x}{\sqrt{x^{2}+1}}.
\]
Adding these, we obtain:
\[
-\frac{x}{\sqrt{x^{2}+1}}+\frac{x}{\sqrt{x^{2}+1}}=0.
\]
Final Answer:
\(\left(x^{2}+1\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=0\).
Question:
15.(ii) If \( y=\log \left(x+\sqrt{x^{2}+a^{2}}\right) \), prove that \(\left(x^{2}+a^{2}\right) y_{2}+x y_{1}=0\).
Solution:
We start with
\[
y=\log\left(x+\sqrt{x^{2}+a^{2}}\right).
\]
First, differentiate with respect to \( x \):
\[
y_{1}=\frac{dy}{dx}=\frac{1}{x+\sqrt{x^2+a^2}}\left(1+\frac{x}{\sqrt{x^2+a^2}}\right).
\]
Note that
\[
1+\frac{x}{\sqrt{x^2+a^2}}=\frac{x+\sqrt{x^2+a^2}}{\sqrt{x^2+a^2}},
\]
so that
\[
y_{1}=\frac{1}{\sqrt{x^2+a^2}}.
\]
Next, differentiate \( y_{1}=\left(x^{2}+a^{2}\right)^{-1/2} \) to obtain \( y_{2} \):
\[
y_{2}=\frac{d}{dx}\left(\left(x^{2}+a^{2}\right)^{-1/2}\right)
= -\frac{1}{2}\left(x^{2}+a^{2}\right)^{-3/2}\cdot 2x
= -\frac{x}{\left(x^{2}+a^{2}\right)^{3/2}}.
\]
Now, form the expression:
\[
\left(x^{2}+a^{2}\right) y_{2}+x y_{1}.
\]
Substituting the values of \( y_{1} \) and \( y_{2} \):
\[
\left(x^{2}+a^{2}\right) \left(-\frac{x}{\left(x^{2}+a^{2}\right)^{3/2}}\right)
+ x\left(\frac{1}{\sqrt{x^{2}+a^{2}}}\right).
\]
Simplify the first term:
\[
\left(x^{2}+a^{2}\right)\left(-\frac{x}{\left(x^{2}+a^{2}\right)^{3/2}}\right)
= -\frac{x}{\sqrt{x^{2}+a^{2}}},
\]
and the second term is:
\[
\frac{x}{\sqrt{x^{2}+a^{2}}}.
\]
Adding these terms yields:
\[
-\frac{x}{\sqrt{x^{2}+a^{2}}}+\frac{x}{\sqrt{x^{2}+a^{2}}}=0.
\]
Final Answer:
\(\left(x^{2}+a^{2}\right) y_{2}+x y_{1}=0\).
Question:
16. If \( y=\cos (\sin x) \), prove that \(\frac{d^{2} y}{d x^{2}}+\tan x \frac{d y}{d x}+y \cos^{2} x=0\).
Solution:
We start with the function
\[
y=\cos (\sin x).
\]
First, differentiate with respect to \( x \):
\[
y_{1}=\frac{dy}{dx} = -\sin (\sin x) \cdot \frac{d}{dx}(\sin x)
= -\sin (\sin x) \cos x.
\]
Next, differentiate \( y_{1} \) to obtain \( y_{2} \):
\[
y_{2}=\frac{d}{dx}\left[-\sin (\sin x) \cos x\right].
\]
Using the product rule:
\[
y_{2}=-\left\{ \frac{d}{dx}\left[\sin (\sin x)\right] \cos x + \sin (\sin x) \frac{d}{dx}(\cos x) \right\}.
\]
Compute the derivative of \(\sin (\sin x)\) by the chain rule:
\[
\frac{d}{dx}\left[\sin (\sin x)\right]=\cos (\sin x) \cdot \cos x.
\]
Also, note that
\[
\frac{d}{dx}(\cos x)=-\sin x.
\]
Therefore,
\[
y_{2}=-\left[ \cos (\sin x) \cos x \cdot \cos x + \sin (\sin x) \cdot (-\sin x) \right].
\]
Simplify:
\[
y_{2}=-\left[ \cos (\sin x) \cos^{2} x – \sin (\sin x) \sin x \right]
= -\cos (\sin x) \cos^{2} x + \sin (\sin x) \sin x.
\]
Now, we need to show that
\[
y_{2}+\tan x\, y_{1}+y \cos^{2} x=0.
\]
Substitute the values obtained:
\[
y_{2} = -\cos (\sin x) \cos^{2} x + \sin (\sin x) \sin x,
\]
\[
y_{1} = -\sin (\sin x) \cos x,
\]
\[
y = \cos (\sin x).
\]
Also, note that
\[
\tan x = \frac{\sin x}{\cos x}.
\]
Compute \(\tan x\, y_{1}\):
\[
\tan x\, y_{1}=\frac{\sin x}{\cos x}\left(-\sin (\sin x) \cos x\right)
= -\sin x\, \sin (\sin x).
\]
Next, compute \(y \cos^{2} x\):
\[
y \cos^{2} x=\cos (\sin x) \cos^{2} x.
\]
Now, add the three terms:
\[
y_{2}+\tan x\, y_{1}+y \cos^{2} x
= \left[-\cos (\sin x) \cos^{2} x + \sin (\sin x) \sin x\right]
-\sin x\, \sin (\sin x)
+\cos (\sin x) \cos^{2} x.
\]
Observe that the terms \(-\cos (\sin x) \cos^{2} x\) and \(+\cos (\sin x) \cos^{2} x\) cancel each other, and the terms \(\sin (\sin x) \sin x\) and \(-\sin x\, \sin (\sin x)\) also cancel:
\[
y_{2}+\tan x\, y_{1}+y \cos^{2} x=0.
\]
Final Answer:
\(\frac{d^{2} y}{d x^{2}}+\tan x \frac{d y}{d x}+y \cos^{2} x=0\).
Question:
17.(i) If \( x=\tan \left(\frac{1}{a}\log y\right) \), then prove that \(\left(1+x^{2}\right)\frac{d^{2}y}{dx^{2}}+(2x-a)\frac{dy}{dx}=0\).
Solution:
Let
\[
u=\frac{1}{a}\log y,\quad \text{so that}\quad y=e^{au}.
\]
Since
\[
x=\tan u,
\]
we have
\[
\frac{dx}{du}=\sec^{2}u.
\]
Also,
\[
\frac{dy}{du}=a\,e^{au}=a\,y.
\]
By the chain rule,
\[
y_{1}=\frac{dy}{dx}=\frac{dy/du}{dx/du}=\frac{a\,y}{\sec^{2}u}=a\,y\cos^{2}u.
\]
But since
\[
\cos^{2}u=\frac{1}{1+\tan^{2}u}=\frac{1}{1+x^{2}},
\]
it follows that
\[
y_{1}=\frac{a\,y}{1+x^{2}}.
\]
Now, differentiate \( y_{1}=\frac{a\,y}{1+x^{2}} \) with respect to \( x \) using the quotient rule:
\[
y_{2}=\frac{d^{2}y}{dx^{2}}=\frac{a\,y_{1}(1+x^{2})-a\,y\cdot2x}{(1+x^{2})^{2}}.
\]
Substituting \( y_{1}=\frac{a\,y}{1+x^{2}} \) into the equation, we get:
\[
y_{2}=\frac{a\left(\frac{a\,y}{1+x^{2}}\right)(1+x^{2})-2ax\,y}{(1+x^{2})^{2}}
=\frac{a^{2}y-2ax\,y}{(1+x^{2})^{2}}
=\frac{a\,y(a-2x)}{(1+x^{2})^{2}}.
\]
Now, form the expression:
\[
\left(1+x^{2}\right)y_{2}+(2x-a)y_{1}.
\]
Substituting the expressions for \( y_{1} \) and \( y_{2} \):
\[
\left(1+x^{2}\right)y_{2}=\left(1+x^{2}\right)\frac{a\,y(a-2x)}{(1+x^{2})^{2}}
=\frac{a\,y(a-2x)}{1+x^{2}},
\]
and
\[
(2x-a)y_{1}=(2x-a)\frac{a\,y}{1+x^{2}}.
\]
Adding these terms, we have:
\[
\left(1+x^{2}\right)y_{2}+(2x-a)y_{1}=\frac{a\,y(a-2x)+(2x-a)a\,y}{1+x^{2}}
=\frac{a\,y\left[(a-2x)+(2x-a)\right]}{1+x^{2}}.
\]
Since
\[
(a-2x)+(2x-a)=0,
\]
it follows that
\[
\left(1+x^{2}\right)y_{2}+(2x-a)y_{1}=0.
\]
Final Answer:
\(\left(1+x^{2}\right)\frac{d^{2}y}{dx^{2}}+(2x-a)\frac{dy}{dx}=0\).
Question:
17. (ii) If \( y=e^{a\cos^{-1} x} \) for \( -1 < x < 1 \), prove that
\[
(1-x^{2})\frac{d^{2}y}{dx^{2}}-x\frac{dy}{dx}-a^{2}y=0.
\]
Solution:
We start with the function
\[
y = e^{a\cos^{-1} x}.
\]
Differentiate with respect to \( x \) using the chain rule. Recall that
\[
\frac{d}{dx}\left(\cos^{-1} x\right) = -\frac{1}{\sqrt{1-x^{2}}}.
\]
Thus, the first derivative is
\[
\frac{dy}{dx} = e^{a\cos^{-1} x} \cdot a \left(-\frac{1}{\sqrt{1-x^{2}}}\right)
= -\frac{a\, e^{a\cos^{-1} x}}{\sqrt{1-x^{2}}} = -\frac{a}{\sqrt{1-x^{2}}}\, y.
\]
Next, differentiate \( \frac{dy}{dx} = -\frac{a}{\sqrt{1-x^{2}}}\, y \) to find the second derivative:
\[
\frac{d^{2}y}{dx^{2}} = \frac{d}{dx}\left(-\frac{a}{\sqrt{1-x^{2}}}\, y\right)
= -a\, \frac{d}{dx}\left(\frac{y}{\sqrt{1-x^{2}}}\right).
\]
Using the quotient rule, we have
\[
\frac{d}{dx}\left(\frac{y}{\sqrt{1-x^{2}}}\right)
= \frac{y’}{\sqrt{1-x^{2}}}+ y\, \frac{d}{dx}\left((1-x^{2})^{-1/2}\right).
\]
Note that
\[
\frac{d}{dx}\left((1-x^{2})^{-1/2}\right)
= -\frac{1}{2}(1-x^{2})^{-3/2}(-2x)
= \frac{x}{(1-x^{2})^{3/2}}.
\]
Substituting \( y’ = -\frac{a}{\sqrt{1-x^{2}}}\, y \) gives
\[
\frac{d}{dx}\left(\frac{y}{\sqrt{1-x^{2}}}\right)
= -\frac{a\, y}{1-x^{2}} + \frac{x\, y}{(1-x^{2})^{3/2}}.
\]
Hence, the second derivative becomes
\[
\frac{d^{2}y}{dx^{2}} = -a \left[-\frac{a\, y}{1-x^{2}} + \frac{x\, y}{(1-x^{2})^{3/2}}\right]
= \frac{a^{2} y}{1-x^{2}} – \frac{a x\, y}{(1-x^{2})^{3/2}}.
\]
Now, multiply this expression by \((1-x^{2})\):
\[
(1-x^{2})\frac{d^{2}y}{dx^{2}} = a^{2}y – \frac{a x\, y}{\sqrt{1-x^{2}}}.
\]
Next, we have from the first derivative:
\[
\frac{dy}{dx} = -\frac{a\, y}{\sqrt{1-x^{2}}} \quad \Rightarrow \quad -x\frac{dy}{dx} = -x\left(-\frac{a\, y}{\sqrt{1-x^{2}}}\right)
= \frac{a x\, y}{\sqrt{1-x^{2}}}.
\]
Adding the two results yields:
\[
(1-x^{2})\frac{d^{2}y}{dx^{2}} – x\frac{dy}{dx} = a^{2}y – \frac{a x\, y}{\sqrt{1-x^{2}}} + \frac{a x\, y}{\sqrt{1-x^{2}}}
= a^{2}y.
\]
Rearranging, we obtain:
\[
(1-x^{2})\frac{d^{2}y}{dx^{2}} – x\frac{dy}{dx} – a^{2}y = 0.
\]
Thus, the given differential equation is verified.
Final Answer:
\( (1-x^{2})\frac{d^{2}y}{dx^{2}}-x\frac{dy}{dx}-a^{2}y=0 \).
Question:
18. If \( y=\log\left(\frac{x}{a+bx}\right)^{x} \), prove that
\[
x^{3} \frac{d^{2} y}{d x^{2}}=\left(x\frac{d y}{d x}-y\right)^{2}.
\]
Solution:
First, observe that
\[
y=\log\left(\frac{x}{a+bx}\right)^{x}= x\log\left(\frac{x}{a+bx}\right).
\]
Thus, we have
\[
\frac{y}{x}=\log x-\log(a+bx).
\]
Let
\[
f(x)=\log x-\log(a+bx).
\]
Then,
\[
y=x\,f(x).
\]
**Step 1. Compute \( \frac{dy}{dx}=y_{1} \):**
By the product rule:
\[
y_{1}=\frac{dy}{dx} = f(x) + x\,f'(x).
\]
We know:
\[
f(x)=\log x-\log(a+bx),
\]
hence,
\[
f'(x)=\frac{1}{x} – \frac{b}{a+bx}.
\]
Therefore,
\[
y_{1}=\log x-\log(a+bx) + x\left(\frac{1}{x}-\frac{b}{a+bx}\right)
= \log x-\log(a+bx) + 1 – \frac{b\,x}{a+bx}.
\]
**Step 2. Compute \( x\frac{dy}{dx}-y \):**
Notice that
\[
x\frac{dy}{dx} = x\,y_{1} = x\left[\log x-\log(a+bx)+1-\frac{b\,x}{a+bx}\right],
\]
and since
\[
y=x\left[\log x-\log(a+bx)\right],
\]
we have
\[
x\frac{dy}{dx}-y = x\left[\log x-\log(a+bx)+1-\frac{b\,x}{a+bx}\right] – x\left[\log x-\log(a+bx)\right].
\]
This simplifies to:
\[
x\frac{dy}{dx}-y = x\left[1-\frac{b\,x}{a+bx}\right].
\]
Write the term inside the bracket as:
\[
1-\frac{b\,x}{a+bx}=\frac{a+bx-bx}{a+bx}=\frac{a}{a+bx}.
\]
Thus,
\[
x\frac{dy}{dx}-y=\frac{a\,x}{a+bx}.
\]
**Step 3. Compute \( \frac{d^{2} y}{dx^{2}}=y_{2} \):**
Differentiate \( y_{1} \) with respect to \( x \):
\[
y_{1}=\log x-\log(a+bx)+1-\frac{b\,x}{a+bx}.
\]
Differentiating term by term:
– \(\frac{d}{dx}(\log x)=\frac{1}{x},\)
– \(\frac{d}{dx}[-\log(a+bx)] = -\frac{b}{a+bx},\)
– \(\frac{d}{dx}(1)=0,\)
– For \(-\frac{b\,x}{a+bx}\), apply the quotient rule:
\[
\frac{d}{dx}\left(\frac{b\,x}{a+bx}\right)=\frac{b(a+bx)-b\,x\cdot b}{(a+bx)^2}=\frac{ab}{(a+bx)^2}.
\]
Therefore,
\[
\frac{d}{dx}\left(-\frac{b\,x}{a+bx}\right)=-\frac{ab}{(a+bx)^2}.
\]
Hence,
\[
y_{2}=\frac{1}{x}-\frac{b}{a+bx}-\frac{ab}{(a+bx)^2}.
\]
**Step 4. Form the expression \( x^{3}y_{2} \):**
Multiply \( y_{2} \) by \( x^{3} \):
\[
x^{3}y_{2} = x^{3}\left[\frac{1}{x}-\frac{b}{a+bx}-\frac{ab}{(a+bx)^2}\right]
= x^{2} – \frac{b\,x^{3}}{a+bx} – \frac{ab\,x^{3}}{(a+bx)^2}.
\]
**Step 5. Compute \( \left(x\frac{dy}{dx}-y\right)^{2} \):**
We found earlier that
\[
x\frac{dy}{dx}-y=\frac{a\,x}{a+bx}.
\]
Squaring both sides:
\[
\left(x\frac{dy}{dx}-y\right)^{2} = \frac{a^{2}x^{2}}{(a+bx)^{2}}.
\]
**Step 6. Show that \( x^{3}y_{2}=\left(x\frac{dy}{dx}-y\right)^{2} \):**
Express \( x^{3}y_{2} \) over the common denominator \( (a+bx)^{2} \):
\[
x^{3}y_{2} = \frac{x^{2}(a+bx)^{2} – b\,x^{3}(a+bx) – ab\,x^{3}}{(a+bx)^{2}}.
\]
Expand \( (a+bx)^{2}=a^{2}+2abx+b^{2}x^{2} \):
\[
x^{2}(a^{2}+2abx+b^{2}x^{2})- b\,x^{3}(a+bx)-ab\,x^{3}.
\]
Compute:
\[
x^{2}(a^{2}+2abx+b^{2}x^{2}) = a^{2}x^{2}+2ab\,x^{3}+b^{2}x^{4},
\]
and
\[
b\,x^{3}(a+bx)= ab\,x^{3}+b^{2}x^{4}.
\]
Thus, the numerator becomes:
\[
a^{2}x^{2}+2ab\,x^{3}+b^{2}x^{4} – ab\,x^{3} – b^{2}x^{4} – ab\,x^{3}
= a^{2}x^{2}.
\]
Therefore,
\[
x^{3}y_{2} = \frac{a^{2}x^{2}}{(a+bx)^{2}},
\]
which matches exactly with
\[
\left(x\frac{dy}{dx}-y\right)^{2}.
\]
Thus, we have shown that
\[
x^{3}\frac{d^{2}y}{dx^{2}}=\left(x\frac{dy}{dx}-y\right)^{2}.
\]
Final Answer:
\[
x^{3} \frac{d^{2} y}{d x^{2}}=\left(x\frac{d y}{d x}-y\right)^{2}.
\]
Question:
19. If \( \sqrt{x}+\sqrt{y}=\sqrt{a} \), find \(\frac{d^{2} y}{d x^{2}}\) at \( x=a \).
Solution:
We begin with
\[
\sqrt{x}+\sqrt{y}=\sqrt{a}.
\]
Isolate \(\sqrt{y}\) to express \(y\) explicitly:
\[
\sqrt{y}=\sqrt{a}-\sqrt{x}.
\]
Squaring both sides, we obtain
\[
y=\left(\sqrt{a}-\sqrt{x}\right)^{2}=a-2\sqrt{a}\sqrt{x}+x.
\]
**Step 1. Compute the first derivative \( \frac{dy}{dx} \):**
Differentiating term by term:
\[
\frac{d}{dx}(a)=0,\quad \frac{d}{dx}\left(-2\sqrt{a}\sqrt{x}\right)=-2\sqrt{a}\cdot\frac{1}{2\sqrt{x}}=-\frac{\sqrt{a}}{\sqrt{x}},\quad \frac{d}{dx}(x)=1.
\]
Therefore,
\[
y’ = \frac{dy}{dx} = -\frac{\sqrt{a}}{\sqrt{x}}+1.
\]
**Step 2. Compute the second derivative \( \frac{d^{2}y}{dx^{2}} \):**
Differentiate \( y’ \) with respect to \( x \):
\[
\frac{d}{dx}\left(-\frac{\sqrt{a}}{\sqrt{x}}\right)
= -\sqrt{a}\cdot \frac{d}{dx}\left(x^{-1/2}\right)
= -\sqrt{a}\left(-\frac{1}{2}x^{-3/2}\right)
= \frac{\sqrt{a}}{2x^{3/2}}.
\]
The derivative of the constant 1 is 0, so:
\[
y” = \frac{d^{2}y}{dx^{2}} = \frac{\sqrt{a}}{2x^{3/2}}.
\]
**Step 3. Evaluate at \( x=a \):**
Substitute \( x=a \) into the expression for \( y” \):
\[
y”\Big|_{x=a} = \frac{\sqrt{a}}{2a^{3/2}}
= \frac{1}{2a}.
\]
Final Answer:
\(\frac{d^{2} y}{d x^{2}}\Big|_{x=a} = \frac{1}{2a}\).
Question:
20. If \( x^{m}y^{n}=(x+y)^{m+n} \), then prove that
(i) \(\frac{dy}{dx}=\frac{y}{x}\)
(ii) \(\frac{d^{2}y}{dx^{2}}=0\).
Solution:
Taking natural logarithms on both sides of
\[
x^{m}y^{n}=(x+y)^{m+n},
\]
we obtain
\[
m\ln x+n\ln y=(m+n)\ln(x+y).
\]
Differentiate both sides with respect to \( x \):
\[
\frac{m}{x}+\frac{n}{y}\frac{dy}{dx}=\frac{m+n}{x+y}\left(1+\frac{dy}{dx}\right).
\]
Let \( y_{1}=\frac{dy}{dx} \). Rearranging the equation:
\[
\frac{m}{x}+\frac{n}{y}y_{1}=\frac{m+n}{x+y}+\frac{m+n}{x+y}y_{1}.
\]
We now make an ansatz that
\[
y_{1}=\frac{y}{x}.
\]
Substitute \( y_{1}=\frac{y}{x} \) into the left-hand side:
\[
\frac{m}{x}+\frac{n}{y}\cdot\frac{y}{x}=\frac{m+n}{x}.
\]
And into the right-hand side:
\[
\frac{m+n}{x+y}\left(1+\frac{y}{x}\right)
=\frac{m+n}{x+y}\cdot\frac{x+y}{x}=\frac{m+n}{x}.
\]
Since both sides are equal, we conclude that
\[
\frac{dy}{dx}=\frac{y}{x}.
\]
For part (ii), differentiate
\[
\frac{dy}{dx}=\frac{y}{x}
\]
with respect to \( x \). Writing \( y_{1}=\frac{dy}{dx} \), we have:
\[
y_{1}=\frac{y}{x}.
\]
Differentiating by the quotient rule:
\[
\frac{d^{2}y}{dx^{2}}=y_{2}=\frac{x\frac{dy}{dx}-y}{x^{2}}.
\]
Substitute \(\frac{dy}{dx}=\frac{y}{x}\) into the expression:
\[
y_{2}=\frac{x\left(\frac{y}{x}\right)-y}{x^{2}}
=\frac{y-y}{x^{2}}=0.
\]
Final Answer:
(i) \(\frac{dy}{dx}=\frac{y}{x}\)
(ii) \(\frac{d^{2}y}{dx^{2}}=0\).
Question:
21. If \( x\cos(a+y)=\cos y \), prove that \(\sin a \frac{d^{2} y}{d x^{2}}+\sin 2(a+y)\frac{d y}{d x}=0\).
Solution:
We begin with the given equation
\[
x\cos(a+y)=\cos y.
\]
**Step 1. Differentiate once to obtain an expression for \(\frac{dy}{dx}\):**
Differentiate both sides with respect to \( x \). Using the product rule on the left-hand side and the chain rule, we have:
\[
\frac{d}{dx}\left[x\cos(a+y)\right]
= \cos(a+y) – x\sin(a+y)\frac{dy}{dx},
\]
and for the right-hand side:
\[
\frac{d}{dx}[\cos y] = -\sin y\,\frac{dy}{dx}.
\]
Hence, the differentiated equation is:
\[
\cos(a+y) – x\sin(a+y)\frac{dy}{dx} = -\sin y\,\frac{dy}{dx}.
\]
Rearranging,
\[
\cos(a+y) = \frac{dy}{dx}\Bigl[x\sin(a+y)-\sin y\Bigr].
\]
We denote
\[
y_{1}=\frac{dy}{dx}.
\]
Thus,
\[
y_{1}=\frac{\cos(a+y)}{x\sin(a+y)-\sin y}.
\]
**Step 2. Differentiate a second time to obtain \(\frac{d^{2} y}{dx^{2}}\):**
Differentiate the relation
\[
\cos(a+y)=y_{1}\Bigl[x\sin(a+y)-\sin y\Bigr]
\]
with respect to \( x \). The derivative of the left-hand side is obtained using the chain rule:
\[
\frac{d}{dx}\left[\cos(a+y)\right]
= -\sin(a+y)\frac{d}{dx}(a+y)
= -\sin(a+y)y_{1},
\]
since \( a \) is constant.
For the right-hand side, apply the product rule:
\[
\frac{d}{dx}\left[y_{1}\Bigl(x\sin(a+y)-\sin y\Bigr)\right]
= y_{2}\Bigl[x\sin(a+y)-\sin y\Bigr] + y_{1}\frac{d}{dx}\Bigl[x\sin(a+y)-\sin y\Bigr],
\]
where
\[
y_{2}=\frac{d^{2}y}{dx^{2}}.
\]
Now, compute the derivative of the bracketed term:
\[
\frac{d}{dx}\left[x\sin(a+y)-\sin y\right]
= \sin(a+y) + x\cos(a+y)y_{1} -\cos y\,y_{1}.
\]
Hence, the second derivative equation becomes:
\[
-\sin(a+y)y_{1} = y_{2}\Bigl[x\sin(a+y)-\sin y\Bigr] + y_{1}\left[\sin(a+y) + x\cos(a+y)y_{1} -\cos y\,y_{1}\right].
\]
**Step 3. Simplify using the given relationship:**
Notice from the original equation that
\[
x\cos(a+y)=\cos y,
\]
which implies
\[
x\cos(a+y)-\cos y=0.
\]
This observation will cancel the terms involving \( y_{1}^{2} \) in the differentiated equation. In fact, we can regroup the equation as:
\[
y_{2}\Bigl[x\sin(a+y)-\sin y\Bigr] = -\sin(a+y)y_{1} – y_{1}\sin(a+y)
= -2\sin(a+y)y_{1}.
\]
Next, express the bracket \( x\sin(a+y)-\sin y \) in a more convenient form. Using the sine subtraction formula, write:
\[
x\sin(a+y)-\sin y
= \frac{\cos y}{\cos(a+y)}\sin(a+y)-\sin y
= \frac{\sin(a+y)\cos y -\sin y\cos(a+y)}{\cos(a+y)}
= \frac{\sin\bigl((a+y)-y\bigr)}{\cos(a+y)}
= \frac{\sin a}{\cos(a+y)}.
\]
Thus, the equation for \( y_{2} \) becomes:
\[
y_{2}\left(\frac{\sin a}{\cos(a+y)}\right) = -2\sin(a+y)y_{1}.
\]
Multiply both sides by \(\cos(a+y)\):
\[
\sin a\,y_{2} = -2\sin(a+y)\cos(a+y)y_{1}.
\]
Recognize that
\[
2\sin(a+y)\cos(a+y)=\sin2(a+y).
\]
Therefore, we obtain:
\[
\sin a\,y_{2} = -\sin2(a+y)y_{1}.
\]
Rearranging, we finally have:
\[
\sin a\,y_{2}+\sin2(a+y)y_{1}=0.
\]
Final Answer:
\(\sin a \frac{d^{2} y}{d x^{2}}+\sin 2(a+y) \frac{d y}{d x}=0\).
Question:
22. If \( x=a(\theta-\sin \theta),\quad y=a(1+\cos \theta) \), find \(\frac{d^{2} y}{d x^{2}}\).
Solution:
We are given the parametric equations:
\[
x = a\left(\theta-\sin \theta\right), \quad y = a\left(1+\cos \theta\right).
\]
**Step 1. Compute the first derivative \(\frac{dy}{dx}\):**
Differentiate with respect to \(\theta\):
\[
\frac{dx}{d\theta} = a\left(1-\cos \theta\right),\quad \frac{dy}{d\theta} = -a\sin \theta.
\]
Thus,
\[
\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{-a\sin \theta}{a\left(1-\cos \theta\right)} = -\frac{\sin \theta}{1-\cos \theta}.
\]
Using the half-angle identities:
\[
1-\cos \theta=2\sin^2\frac{\theta}{2},\quad \sin \theta=2\sin\frac{\theta}{2}\cos\frac{\theta}{2},
\]
we simplify:
\[
\frac{dy}{dx} = -\frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\sin^2\frac{\theta}{2}} = -\cot\frac{\theta}{2}.
\]
**Step 2. Compute the second derivative \(\frac{d^{2}y}{dx^{2}}\):**
Differentiate \(\frac{dy}{dx}=-\cot\frac{\theta}{2}\) with respect to \(\theta\):
\[
\frac{d}{d\theta}\left(-\cot\frac{\theta}{2}\right)
= -\left(-\csc^2\frac{\theta}{2}\cdot \frac{1}{2}\right)
= \frac{1}{2}\csc^2\frac{\theta}{2}.
\]
Then, by the chain rule:
\[
\frac{d^{2}y}{dx^{2}}=\frac{\frac{d}{d\theta}\left(\frac{dy}{dx}\right)}{\frac{dx}{d\theta}}
=\frac{\frac{1}{2}\csc^2\frac{\theta}{2}}{a\left(1-\cos \theta\right)}.
\]
Substitute \( 1-\cos \theta = 2\sin^2\frac{\theta}{2} \):
\[
\frac{d^{2}y}{dx^{2}}=\frac{\frac{1}{2}\csc^2\frac{\theta}{2}}{a\cdot 2\sin^2\frac{\theta}{2}}
=\frac{1}{4a}\cdot\frac{1}{\sin^2\frac{\theta}{2}\,\sin^2\frac{\theta}{2}}
=\frac{1}{4a}\,\mathrm{cosec}^{4}\left(\frac{\theta}{2}\right).
\]
Final Answer:
\[
\frac{d^{2}y}{dx^{2}}=\frac{1}{4a}\,\mathrm{cosec}^{4}\left(\frac{\theta}{2}\right).
\]
Question:
23. If \( x=\log t \) and \( y=\frac{1}{t} \), prove that
\[
\frac{d^{2} y}{dx^{2}}+\frac{dy}{dx}=0.
\]
Solution:
Since
\[
x=\log t,
\]
we have
\[
t=e^{x}.
\]
Given
\[
y=\frac{1}{t},
\]
then in terms of \( x \), the function becomes:
\[
y=\frac{1}{e^{x}}=e^{-x}.
\]
Now, differentiate \( y \) with respect to \( x \):
\[
\frac{dy}{dx}=\frac{d}{dx}\left(e^{-x}\right)=-e^{-x}.
\]
Next, differentiate the first derivative to find the second derivative:
\[
\frac{d^{2}y}{dx^{2}}=\frac{d}{dx}\left(-e^{-x}\right)=e^{-x}.
\]
Adding the two derivatives gives:
\[
\frac{d^{2}y}{dx^{2}}+\frac{dy}{dx}=e^{-x}-e^{-x}=0.
\]
Final Answer:
\( \frac{d^{2}y}{dx^{2}}+\frac{dy}{dx}=0 \).
Question:
24. If \( x=a\sin(pt) \) and \( y=b\cos(pt) \), find the value of
\(\displaystyle \frac{d^{2}y}{dx^{2}}\) at \( t=0 \).
Solution:
We first compute the derivatives with respect to the parameter \( t \).
Since
\[
x=a\sin(pt), \quad \text{we have} \quad \frac{dx}{dt}=a p\cos(pt),
\]
and
\[
y=b\cos(pt), \quad \text{so} \quad \frac{dy}{dt}=-b p\sin(pt).
\]
Then, the first derivative is given by:
\[
\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{-b p\sin(pt)}{a p\cos(pt)}=-\frac{b}{a}\tan(pt).
\]
To find the second derivative, differentiate \(\frac{dy}{dx}\) with respect to \(t\) and multiply by \(\frac{dt}{dx}\):
\[
\frac{d^2y}{dx^2}=\frac{d}{dt}\left(-\frac{b}{a}\tan(pt)\right)\cdot\frac{dt}{dx}.
\]
Differentiate the first derivative with respect to \(t\):
\[
\frac{d}{dt}\left(-\frac{b}{a}\tan(pt)\right)=-\frac{b}{a} \cdot p\sec^2(pt).
\]
Since
\[
\frac{dx}{dt}=a p\cos(pt), \quad \text{we have} \quad \frac{dt}{dx}=\frac{1}{a p\cos(pt)}.
\]
Therefore,
\[
\frac{d^2y}{dx^2}=-\frac{b}{a}\, p\,\sec^2(pt)\cdot\frac{1}{a p\cos(pt)}
=-\frac{b}{a^2}\cdot\frac{\sec^2(pt)}{\cos(pt)}
=-\frac{b}{a^2}\cdot\frac{1}{\cos^3(pt)}.
\]
Evaluating at \( t=0 \):
\[
\cos(p\cdot0)=1 \quad \text{and thus} \quad \frac{d^2y}{dx^2}\Big|_{t=0}=-\frac{b}{a^2}.
\]
Final Answer:
\( -\frac{b}{a^2} \).
Question:
25. If \( x=a(1+\cos t), \; y=a(t+\sin t) \), find \(\displaystyle \frac{d^{2}y}{dx^{2}}\) at \( t=\frac{\pi}{2} \).
Solution:
We first compute the derivatives with respect to \( t \).
Since
\[
x=a(1+\cos t), \quad \frac{dx}{dt}=a(-\sin t),
\]
and
\[
y=a(t+\sin t), \quad \frac{dy}{dt}=a\left(1+\cos t\right).
\]
Hence, the first derivative is
\[
\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{a(1+\cos t)}{a(-\sin t)}
=-\frac{1+\cos t}{\sin t}.
\]
Next, we differentiate \(\frac{dy}{dx}\) with respect to \( t \):
\[
\frac{d}{dt}\left(-\frac{1+\cos t}{\sin t}\right)
= -\frac{d}{dt}\left(\frac{1+\cos t}{\sin t}\right).
\]
Using the quotient rule with \( f(t)=1+\cos t \) and \( g(t)=\sin t \):
\[
f'(t)=-\sin t, \quad g'(t)=\cos t,
\]
we have
\[
\frac{d}{dt}\left(\frac{1+\cos t}{\sin t}\right)
= \frac{f'(t)g(t)-f(t)g'(t)}{g^2(t)}
= \frac{(-\sin t)(\sin t)-(1+\cos t)(\cos t)}{\sin^2 t}.
\]
Simplifying the numerator:
\[
-\sin^2 t – (1+\cos t)\cos t
= -\sin^2 t -\cos t -\cos^2 t.
\]
Since \(\sin^2 t + \cos^2 t =1\), it follows that
\[
-\sin^2 t -\cos^2 t = -1.
\]
Thus, the numerator becomes:
\[
-1-\cos t.
\]
Therefore,
\[
\frac{d}{dt}\left(\frac{1+\cos t}{\sin t}\right)
= \frac{-1-\cos t}{\sin^2 t}.
\]
Including the negative sign from earlier, we get:
\[
\frac{d}{dt}\left(\frac{dy}{dx}\right)
= -\left(\frac{-1-\cos t}{\sin^2 t}\right)
= \frac{1+\cos t}{\sin^2 t}.
\]
Now, the second derivative is given by:
\[
\frac{d^2y}{dx^2}=\frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}
= \frac{\frac{1+\cos t}{\sin^2 t}}{a(-\sin t)}
= -\frac{1+\cos t}{a\sin^3 t}.
\]
Evaluating at \( t=\frac{\pi}{2} \):
\[
\cos \frac{\pi}{2}=0, \quad \sin \frac{\pi}{2}=1.
\]
Therefore,
\[
\frac{d^2y}{dx^2}\Bigg|_{t=\frac{\pi}{2}}
= -\frac{1+0}{a(1)^3}
= -\frac{1}{a}.
\]
Final Answer:
\( -\frac{1}{a} \).