Here is the complete ML Aggarwal Class 12 Solutions of Exercise – 5.12 for Chapter 5 – Continuity and Differentiability. Each question is solved step by step for better understanding.
Question:
1. (i) Find \(\frac{dy}{dx}\) when \(x = a t^2\) and \(y = 2a t\).
Solution:
We differentiate both \(x\) and \(y\) with respect to \(t\):
\[
\frac{dx}{dt} = \frac{d}{dt}(a t^2) = 2a t,
\]
\[
\frac{dy}{dt} = \frac{d}{dt}(2a t) = 2a.
\]
Using the chain rule:
\[
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2a}{2a t} = \frac{1}{t}.
\]
Final Answer:
\(\frac{dy}{dx} = \frac{1}{t}\).
Question:
1. (ii) Find \(\frac{dy}{dx}\) when \(x = 2a t^2\) and \(y = a t^4\).
Solution:
Differentiate both functions with respect to \(t\):
\[
\frac{dx}{dt} = \frac{d}{dt}(2a t^2) = 4a t,
\]
\[
\frac{dy}{dt} = \frac{d}{dt}(a t^4) = 4a t^3.
\]
Then, using the chain rule:
\[
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{4a t^3}{4a t} = t^2.
\]
Final Answer:
\(\frac{dy}{dx} = t^2\).
Question:
2. (i) Find \(\frac{dy}{dx}\) when \(x = a \cos \theta\) and \(y = b \cos \theta\).
Solution:
Differentiate with respect to \(\theta\):
\[
\frac{dx}{d\theta} = -a \sin \theta,\quad \frac{dy}{d\theta} = -b \sin \theta.
\]
Then, by the chain rule:
\[
\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{-b \sin \theta}{-a \sin \theta} = \frac{b}{a}.
\]
Final Answer:
\(\frac{dy}{dx} = \frac{b}{a}\).
Question:
2. (ii) Find \(\frac{dy}{dx}\) when \(x = a \cos \theta\) and \(y = a \sin \theta\).
Solution:
Differentiate both functions with respect to \(\theta\):
\[
\frac{dx}{d\theta} = -a \sin \theta,\quad \frac{dy}{d\theta} = a \cos \theta.
\]
Using the chain rule:
\[
\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a \cos \theta}{-a \sin \theta} = -\cot \theta.
\]
Final Answer:
\(\frac{dy}{dx} = -\cot \theta\).
Question:
3. (i) Find \(\frac{dy}{dx}\) when \(x = a \sec \theta\) and \(y = b \tan \theta\).
Solution:
Differentiate both functions with respect to \(\theta\):
\[
\frac{dx}{d\theta} = a \sec \theta \tan \theta,\quad \frac{dy}{d\theta} = b \sec^2 \theta.
\]
Then, using the chain rule:
\[
\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{b \sec^2 \theta}{a \sec \theta \tan \theta} = \frac{b \sec \theta}{a \tan \theta}.
\]
Express \(\sec \theta\) and \(\tan \theta\) in terms of sine:
\[
\sec \theta = \frac{1}{\cos \theta},\quad \tan \theta = \frac{\sin \theta}{\cos \theta}.
\]
Substituting these:
\[
\frac{dy}{dx} = \frac{b \cdot \frac{1}{\cos \theta}}{a \cdot \frac{\sin \theta}{\cos \theta}} = \frac{b}{a \sin \theta} = \frac{b}{a}\,\mathrm{cosec}\,\theta.
\]
Final Answer:
\(\frac{dy}{dx} = \frac{b}{a}\,\mathrm{cosec}\,\theta\).
Question:
3. (ii) Find \(\frac{dy}{dx}\) when \(x = \sin t\) and \(y = \cos 2t\).
Solution:
Differentiate both functions with respect to \(t\):
\[
\frac{dx}{dt} = \cos t,\quad \frac{dy}{dt} = -2\sin 2t.
\]
Since \(\sin 2t = 2\sin t\cos t\), we have:
\[
\frac{dy}{dt} = -2(2\sin t\cos t) = -4\sin t\cos t.
\]
Therefore, applying the chain rule:
\[
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-4\sin t\cos t}{\cos t} = -4\sin t.
\]
Final Answer:
\(\frac{dy}{dx} = -4\sin t\).
Question:
4. (i) Find \(\frac{dy}{dx}\) when \(x = 4t\) and \(y = \frac{4}{t}\).
Solution:
Differentiate both functions with respect to \(t\):
\[
\frac{dx}{dt} = 4,
\]
\[
\frac{dy}{dt} = \frac{d}{dt}\left(\frac{4}{t}\right) = -\frac{4}{t^2}.
\]
Then, using the chain rule:
\[
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-\frac{4}{t^2}}{4} = -\frac{1}{t^2}.
\]
Final Answer:
\(\frac{dy}{dx} = -\frac{1}{t^2}\).
Question:
4. (ii) Find \(\frac{dy}{dx}\) when \(x = t + \frac{1}{t}\) and \(y = t – \frac{1}{t}\).
Solution:
First, differentiate \(x\) and \(y\) with respect to \(t\):
\[
\frac{dx}{dt} = 1 – \frac{1}{t^2},
\]
\[
\frac{dy}{dt} = 1 + \frac{1}{t^2}.
\]
Then, applying the chain rule:
\[
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{1 + \frac{1}{t^2}}{1 – \frac{1}{t^2}} = \frac{t^2+1}{t^2-1}.
\]
Final Answer:
\(\frac{dy}{dx} = \frac{t^2+1}{t^2-1}\).
Question:
4. (iii) Find \(\frac{dy}{dx}\) when \(x = a(t-\sin t)\) and \(y = a(1+\cos t)\).
Solution:
First, differentiate with respect to \(t\):
\[
\frac{dx}{dt} = a(1-\cos t),
\]
\[
\frac{dy}{dt} = -a\sin t.
\]
Then, by the chain rule:
\[
\frac{dy}{dx} = \frac{-a\sin t}{a(1-\cos t)} = -\frac{\sin t}{1-\cos t}.
\]
Using the half-angle identities:
\[
\sin t = 2\sin\frac{t}{2}\cos\frac{t}{2},\quad 1-\cos t = 2\sin^2\frac{t}{2},
\]
we have:
\[
\frac{dy}{dx} = -\frac{2\sin\frac{t}{2}\cos\frac{t}{2}}{2\sin^2\frac{t}{2}} = -\cot\frac{t}{2}.
\]
Final Answer:
\(\frac{dy}{dx} = -\cot\frac{t}{2}\).
Question:
5. (i) Find \(\frac{dy}{dx}\) when \(x = a \sin^3 t\) and \(y = a \cos^3 t\).
Solution:
Differentiate \(x\) and \(y\) with respect to \(t\):
\[
\frac{dx}{dt} = \frac{d}{dt}\left(a \sin^3 t\right) = 3a \sin^2 t \cos t,
\]
\[
\frac{dy}{dt} = \frac{d}{dt}\left(a \cos^3 t\right) = -3a \cos^2 t \sin t.
\]
Then, by the chain rule:
\[
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-3a \cos^2 t \sin t}{3a \sin^2 t \cos t} = -\frac{\cos t}{\sin t} = -\cot t.
\]
Final Answer:
\(\frac{dy}{dx} = -\cot t\).
Question:
5(ii) Differentiate \( x = a(\theta+\sin \theta) \) and \( y = a(1-\cos \theta) \) with respect to \( \theta \) and hence find \(\frac{dy}{dx}\).
Solution:
First, we differentiate the given functions with respect to \(\theta\):
\[
\frac{dx}{d\theta} = a\left(1+\cos \theta\right)
\]
\[
\frac{dy}{d\theta} = a\sin \theta
\]
Now, the derivative \(\frac{dy}{dx}\) is given by the ratio:
\[
\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a\sin \theta}{a(1+\cos \theta)} = \frac{\sin \theta}{1+\cos \theta}.
\]
Using the half-angle identities:
\[
\sin \theta = 2\sin\frac{\theta}{2}\cos\frac{\theta}{2} \quad \text{and} \quad 1+\cos \theta = 2\cos^2\frac{\theta}{2},
\]
we simplify:
\[
\frac{dy}{dx} = \frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\cos^2\frac{\theta}{2}} = \frac{\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}} = \tan\frac{\theta}{2}.
\]
Final Answer:
\(\displaystyle \tan\frac{\theta}{2}\)
Question:
5(iii) Differentiate \( x = a(1-\cos \theta) \) and \( y = a(\theta+\sin \theta) \) with respect to \(\theta\) and hence find \(\frac{dy}{dx}\).
Solution:
First, differentiate the given functions with respect to \(\theta\):
\[
\frac{dx}{d\theta} = a\sin \theta,
\]
\[
\frac{dy}{d\theta} = a\left(1+\cos \theta\right).
\]
Thus, the derivative \(\frac{dy}{dx}\) is:
\[
\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a(1+\cos \theta)}{a\sin \theta} = \frac{1+\cos \theta}{\sin \theta}.
\]
Using the half-angle identities:
\[
1+\cos \theta = 2\cos^2\frac{\theta}{2} \quad \text{and} \quad \sin \theta = 2\sin\frac{\theta}{2}\cos\frac{\theta}{2},
\]
we simplify:
\[
\frac{dy}{dx} = \frac{2\cos^2\frac{\theta}{2}}{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}} = \frac{\cos\frac{\theta}{2}}{\sin\frac{\theta}{2}} = \cot\frac{\theta}{2}.
\]
Final Answer:
\(\displaystyle \cot\frac{\theta}{2}\)
Question:
6(i) Differentiate \( x=e^{t}(\sin t+\cos t) \) and \( y=e^{t}(\sin t-\cos t) \) with respect to \( t \) and hence find \(\frac{dy}{dx}\).
Solution:
The given functions are:
\[
x=e^{t}(\sin t+\cos t) \quad \text{and} \quad y=e^{t}(\sin t-\cos t).
\]
Differentiate \( x \) with respect to \( t \) using the product rule:
\[
\frac{dx}{dt} = e^{t}(\sin t+\cos t) + e^{t}(\cos t-\sin t)
\]
Simplifying:
\[
\frac{dx}{dt} = e^{t}\Big[(\sin t+\cos t)+(\cos t-\sin t)\Big] = e^{t}(2\cos t) = 2e^{t}\cos t.
\]
Next, differentiate \( y \) with respect to \( t \):
\[
\frac{dy}{dt} = e^{t}(\sin t-\cos t) + e^{t}(\cos t+\sin t)
\]
Simplifying:
\[
\frac{dy}{dt} = e^{t}\Big[(\sin t-\cos t)+(\cos t+\sin t)\Big] = e^{t}(2\sin t) = 2e^{t}\sin t.
\]
Now, the derivative \(\frac{dy}{dx}\) is given by:
\[
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2e^{t}\sin t}{2e^{t}\cos t} = \frac{\sin t}{\cos t} = \tan t.
\]
Final Answer:
\(\displaystyle \tan t\)
Question:
6(ii) Differentiate \( x=\cos \theta-\cos 2\theta \) and \( y=\sin \theta-\sin 2\theta \) with respect to \( \theta \) and hence find \(\frac{dy}{dx}\).
Solution:
The given functions are:
\[
x=\cos \theta-\cos 2\theta, \quad y=\sin \theta-\sin 2\theta.
\]
Differentiate \( x \) with respect to \( \theta \):
\[
\frac{dx}{d\theta} = -\sin \theta + 2\sin 2\theta.
\]
Differentiate \( y \) with respect to \( \theta \):
\[
\frac{dy}{d\theta} = \cos \theta – 2\cos 2\theta.
\]
Therefore, the derivative \(\frac{dy}{dx}\) is:
\[
\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\cos \theta – 2\cos 2\theta}{2\sin 2\theta – \sin \theta}.
\]
Final Answer:
\(\displaystyle \frac{\cos \theta – 2\cos 2\theta}{2\sin 2\theta – \sin \theta}\)
Question:
6(iii) Differentiate \( x=a(\cos \theta+\cos 2\theta) \) and \( y=b(\sin \theta+\sin 2\theta) \) with respect to \(\theta\) and hence find \(\frac{dy}{dx}\).
Solution:
The given functions are:
\[
x=a\left(\cos \theta+\cos 2\theta\right) \quad \text{and} \quad y=b\left(\sin \theta+\sin 2\theta\right).
\]
Differentiating \( x \) with respect to \(\theta\):
\[
\frac{dx}{d\theta}=a\left(-\sin \theta-2\sin 2\theta\right).
\]
Differentiating \( y \) with respect to \(\theta\):
\[
\frac{dy}{d\theta}=b\left(\cos \theta+2\cos 2\theta\right).
\]
Therefore, the derivative \(\frac{dy}{dx}\) is:
\[
\frac{dy}{dx}=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}=\frac{b\left(\cos \theta+2\cos 2\theta\right)}{a\left(-\sin \theta-2\sin 2\theta\right)}=-\frac{b}{a}\cdot\frac{\cos \theta+2\cos 2\theta}{\sin \theta+2\sin 2\theta}.
\]
Final Answer:
\(\displaystyle -\frac{b}{a}\cdot\frac{\cos \theta+2\cos 2\theta}{\sin \theta+2\sin 2\theta}\)
Question:
6(iv) Given \( x=\frac{1+\log t}{t^{2}} \) and \( y=\frac{3+2\log t}{t} \), differentiate both with respect to \( t \) and hence find \(\frac{dy}{dx}\).
Solution:
We have
\[
x=\frac{1+\log t}{t^{2}} \quad \text{and} \quad y=\frac{3+2\log t}{t}.
\]
Express \( x \) and \( y \) as:
\[
x=(1+\log t)t^{-2}, \quad y=(3+2\log t)t^{-1}.
\]
Differentiate \( x \) with respect to \( t \) using the product rule:
\[
\frac{dx}{dt} = \frac{d}{dt}(1+\log t)\cdot t^{-2} + (1+\log t)\cdot\frac{d}{dt}(t^{-2}).
\]
Here,
\[
\frac{d}{dt}(1+\log t)=\frac{1}{t} \quad \text{and} \quad \frac{d}{dt}(t^{-2})=-2t^{-3}.
\]
Thus,
\[
\frac{dx}{dt} = \frac{1}{t}\cdot t^{-2} + (1+\log t)(-2t^{-3}) = t^{-3}-2(1+\log t)t^{-3}.
\]
Simplify:
\[
\frac{dx}{dt} = \frac{1-2-2\log t}{t^{3}}=\frac{-1-2\log t}{t^{3}}.
\]
Next, differentiate \( y \) with respect to \( t \):
\[
\frac{dy}{dt} = \frac{d}{dt}(3+2\log t)\cdot t^{-1} + (3+2\log t)\cdot\frac{d}{dt}(t^{-1}).
\]
Here,
\[
\frac{d}{dt}(3+2\log t)=\frac{2}{t} \quad \text{and} \quad \frac{d}{dt}(t^{-1})=-t^{-2}.
\]
Thus,
\[
\frac{dy}{dt} = \frac{2}{t}\cdot t^{-1} – (3+2\log t)t^{-2} = \frac{2}{t^{2}}-\frac{3+2\log t}{t^{2}}.
\]
Simplify:
\[
\frac{dy}{dt} = \frac{2-3-2\log t}{t^{2}}=\frac{-1-2\log t}{t^{2}}.
\]
Now, the derivative \(\frac{dy}{dx}\) is:
\[
\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{\frac{-1-2\log t}{t^{2}}}{\frac{-1-2\log t}{t^{3}}}=\frac{-1-2\log t}{t^{2}} \cdot \frac{t^{3}}{-1-2\log t} = t.
\]
Final Answer:
\(\displaystyle t\)
Question:
6(v) Differentiate \( x=3\cos \theta-2\cos^{3}\theta \) and \( y=3\sin \theta-2\sin^{3}\theta \) with respect to \(\theta\) and hence find \(\frac{dy}{dx}\).
Solution:
We are given:
\[
x=3\cos \theta-2\cos^{3}\theta, \quad y=3\sin \theta-2\sin^{3}\theta.
\]
Differentiating \( x \) with respect to \(\theta\):
\[
\frac{dx}{d\theta}=\frac{d}{d\theta}(3\cos \theta)-2\frac{d}{d\theta}(\cos^{3}\theta).
\]
Compute each derivative:
\[
\frac{d}{d\theta}(3\cos \theta)=-3\sin \theta,
\]
and using the chain rule,
\[
\frac{d}{d\theta}(\cos^{3}\theta)=3\cos^{2}\theta\cdot (-\sin \theta)=-3\cos^{2}\theta\sin \theta.
\]
Hence,
\[
\frac{dx}{d\theta}=-3\sin \theta-2\left(-3\cos^{2}\theta\sin \theta\right)=-3\sin \theta+6\cos^{2}\theta\sin \theta.
\]
Factorizing:
\[
\frac{dx}{d\theta}=\sin \theta\left(6\cos^{2}\theta-3\right).
\]
Next, differentiate \( y \) with respect to \(\theta\):
\[
\frac{dy}{d\theta}=\frac{d}{d\theta}(3\sin \theta)-2\frac{d}{d\theta}(\sin^{3}\theta).
\]
Compute each derivative:
\[
\frac{d}{d\theta}(3\sin \theta)=3\cos \theta,
\]
and
\[
\frac{d}{d\theta}(\sin^{3}\theta)=3\sin^{2}\theta\cos \theta.
\]
Thus,
\[
\frac{dy}{d\theta}=3\cos \theta-2\cdot 3\sin^{2}\theta\cos \theta=3\cos \theta-6\sin^{2}\theta\cos \theta.
\]
Factorizing:
\[
\frac{dy}{d\theta}=\cos \theta\left(3-6\sin^{2}\theta\right).
\]
Now, the derivative \(\frac{dy}{dx}\) is given by:
\[
\frac{dy}{dx}=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}=\frac{\cos \theta\left(3-6\sin^{2}\theta\right)}{\sin \theta\left(6\cos^{2}\theta-3\right)}.
\]
Notice that:
\[
6\cos^{2}\theta-3=6(1-\sin^{2}\theta)-3=6-6\sin^{2}\theta-3=3-6\sin^{2}\theta.
\]
Therefore, we have:
\[
\frac{dy}{dx}=\frac{\cos \theta\left(3-6\sin^{2}\theta\right)}{\sin \theta\left(3-6\sin^{2}\theta\right)}=\frac{\cos \theta}{\sin \theta}=\cot \theta.
\]
Final Answer:
\(\displaystyle \cot \theta\)
Question:
7(i) If \( x=2\cos t-\cos 2t \) and \( y=2\sin t-\sin 2t \), find \(\frac{dy}{dx}\) at \( t=\frac{\pi}{4} \).
Solution:
We are given:
\[
x=2\cos t-\cos 2t, \quad y=2\sin t-\sin 2t.
\]
Differentiate \( x \) with respect to \( t \):
\[
\frac{dx}{dt}=-2\sin t+2\sin 2t.
\]
Differentiate \( y \) with respect to \( t \):
\[
\frac{dy}{dt}=2\cos t-2\cos 2t.
\]
Thus, the derivative is:
\[
\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{2\cos t-2\cos 2t}{-2\sin t+2\sin 2t}=\frac{\cos t-\cos 2t}{-\sin t+\sin 2t}.
\]
Substituting \( t=\frac{\pi}{4} \):
\[
\cos\frac{\pi}{4}=\frac{\sqrt{2}}{2}, \quad \cos\frac{\pi}{2}=0,
\]
\[
\sin\frac{\pi}{4}=\frac{\sqrt{2}}{2}, \quad \sin\frac{\pi}{2}=1.
\]
Therefore,
\[
\frac{dy}{dx}=\frac{\frac{\sqrt{2}}{2}-0}{-\frac{\sqrt{2}}{2}+1}=\frac{\frac{\sqrt{2}}{2}}{\frac{2-\sqrt{2}}{2}}=\frac{\sqrt{2}}{2-\sqrt{2}}.
\]
Multiplying numerator and denominator by \(2+\sqrt{2}\):
\[
\frac{dy}{dx}=\frac{\sqrt{2}(2+\sqrt{2})}{(2-\sqrt{2})(2+\sqrt{2})}=\frac{\sqrt{2}(2+\sqrt{2})}{4-2}=\frac{\sqrt{2}(2+\sqrt{2})}{2}.
\]
Simplify further:
\[
\frac{dy}{dx}=\frac{2\sqrt{2}+2}{2}=\sqrt{2}+1.
\]
Final Answer:
\(\displaystyle \sqrt{2}+1\)
Question:
7(ii) If \( x=3\sin t-\sin 3t \) and \( y=3\cos t-\cos 3t \), find \(\frac{dy}{dx}\) at \( t=\frac{\pi}{3} \).
Solution:
The given functions are:
\[
x=3\sin t-\sin 3t \quad \text{and} \quad y=3\cos t-\cos 3t.
\]
Differentiating \( x \) with respect to \( t \):
\[
\frac{dx}{dt} = 3\cos t – 3\cos 3t.
\]
Differentiating \( y \) with respect to \( t \):
\[
\frac{dy}{dt} = -3\sin t + 3\sin 3t.
\]
Hence, the derivative \(\frac{dy}{dx}\) is:
\[
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-3\sin t+3\sin 3t}{3\cos t-3\cos 3t} = \frac{-\sin t+\sin 3t}{\cos t-\cos 3t}.
\]
Now, substituting \( t=\frac{\pi}{3} \):
\[
\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}, \quad \cos\frac{\pi}{3} = \frac{1}{2},
\]
\[
\sin\left(3\cdot\frac{\pi}{3}\right)=\sin\pi = 0, \quad \cos\left(3\cdot\frac{\pi}{3}\right)=\cos\pi = -1.
\]
Therefore,
\[
\frac{dy}{dx} = \frac{-\frac{\sqrt{3}}{2}+0}{\frac{1}{2}-(-1)} = \frac{-\frac{\sqrt{3}}{2}}{\frac{3}{2}} = -\frac{\sqrt{3}}{3}.
\]
Noting that \(-\frac{\sqrt{3}}{3}\) is equivalent to \(-\frac{1}{\sqrt{3}}\), we have our final result.
Final Answer:
\(\displaystyle -\frac{1}{\sqrt{3}}\)
Question:
7(iii) If \( x=\frac{2b t}{1+t^{2}} \) and \( y=\frac{a(1-t^{2})}{1+t^{2}} \), find \(\frac{dy}{dx}\) at \( t=2 \).
Solution:
We are given:
\[
x=\frac{2b t}{1+t^{2}} \quad \text{and} \quad y=\frac{a(1-t^{2})}{1+t^{2}}.
\]
\(\underline{\text{Differentiate } x \text{ w.r.t. } t:}\)
Using the quotient rule, for
\[
x=\frac{2bt}{1+t^{2}},
\]
we have:
\[
\frac{dx}{dt}=\frac{(1+t^{2})\cdot (2b)-2bt\cdot (2t)}{(1+t^{2})^{2}}.
\]
Simplify the numerator:
\[
(1+t^{2})\cdot (2b)-2bt\cdot (2t)=2b(1+t^{2})-4bt^{2}=2b\left(1+t^{2}-2t^{2}\right)=2b(1-t^{2}).
\]
Therefore,
\[
\frac{dx}{dt}=\frac{2b(1-t^{2})}{(1+t^{2})^{2}}.
\]
\(\underline{\text{Differentiate } y \text{ w.r.t. } t:}\)
For
\[
y=\frac{a(1-t^{2})}{1+t^{2}},
\]
applying the quotient rule:
\[
\frac{dy}{dt}=\frac{(1+t^{2})\cdot \frac{d}{dt}\bigl(a(1-t^{2})\bigr)-a(1-t^{2})\cdot \frac{d}{dt}(1+t^{2})}{(1+t^{2})^{2}}.
\]
Compute the derivatives:
\[
\frac{d}{dt}\bigl(a(1-t^{2})\bigr)=-2at, \quad \frac{d}{dt}(1+t^{2})=2t.
\]
Substitute these into the expression:
\[
\frac{dy}{dt}=\frac{(1+t^{2})(-2at)-a(1-t^{2})(2t)}{(1+t^{2})^{2}}.
\]
Simplify the numerator:
\[
-2at(1+t^{2})-2at(1-t^{2})=-2at\bigl[(1+t^{2})+(1-t^{2})\bigr]=-2at(2)= -4at.
\]
Thus,
\[
\frac{dy}{dt}=\frac{-4at}{(1+t^{2})^{2}}.
\]
\(\underline{\text{Find } \frac{dy}{dx}:}\)
\[
\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{\displaystyle \frac{-4at}{(1+t^{2})^{2}}}{\displaystyle \frac{2b(1-t^{2})}{(1+t^{2})^{2}}}=\frac{-4at}{2b(1-t^{2})}=\frac{-2at}{b(1-t^{2})}.
\]
\(\underline{\text{Substitute } t=2:}\)
\[
\frac{dy}{dx}\Biggr|_{t=2}=\frac{-2a(2)}{b\bigl(1-2^{2}\bigr)}=\frac{-4a}{b(1-4)}=\frac{-4a}{b(-3)}=\frac{4a}{3b}.
\]
Final Answer:
\(\displaystyle \frac{4a}{3b}\)
Question:
8(i) Differentiate \(\frac{x^{2}}{1-x^{2}}\) with respect to \(x^{2}\).
Solution:
Let \( u = x^2 \). Then the given function can be written as
\[
f(u) = \frac{u}{1-u}.
\]
Differentiating \( f(u) \) with respect to \( u \) using the quotient rule:
\[
\frac{d f}{du} = \frac{(1-u)\cdot 1 – u\cdot (-1)}{(1-u)^2}
= \frac{1-u+u}{(1-u)^2}
= \frac{1}{(1-u)^2}.
\]
Replacing \( u \) back with \( x^2 \), we get:
\[
\frac{d}{d(x^2)}\left(\frac{x^{2}}{1-x^{2}}\right) = \frac{1}{\left(1-x^{2}\right)^2}.
\]
Final Answer:
\(\frac{1}{\left(1-x^{2}\right)^2}\)
Question:
8(ii) Differentiate \(\sin x^{2}\) with respect to \(x^{3}\).
Solution:
Let \( u = x^3 \). To find \(\frac{d}{du}(\sin x^2)\), we use the chain rule:
\[
\frac{d}{du}(\sin x^2)= \frac{d}{dx}(\sin x^2) \cdot \frac{dx}{du}.
\]
First, differentiate \(\sin x^2\) with respect to \(x\):
\[
\frac{d}{dx}(\sin x^2)= \cos x^2 \cdot 2x.
\]
Next, differentiate \(x^3\) with respect to \(x\):
\[
\frac{du}{dx} = 3x^2 \quad \Longrightarrow \quad \frac{dx}{du} = \frac{1}{3x^2}.
\]
Hence,
\[
\frac{d}{du}(\sin x^2)= \left(2x \cos x^2\right) \cdot \frac{1}{3x^2} = \frac{2\cos x^2}{3x}.
\]
Final Answer:
\(\frac{2\cos x^2}{3x}\)
Question:
8(iii) Differentiate \(\cot^{3}(2x+1)\) with respect to \(x^{2}+1\).
Solution:
Let \( f(x)=\cot^{3}(2x+1) \) and \( u=x^2+1 \).
Then, by the chain rule,
\[
\frac{d f}{du}=\frac{\frac{d f}{dx}}{\frac{d u}{dx}}.
\]
First, differentiate \( u=x^2+1 \):
\[
\frac{d u}{dx}=2x.
\]
Next, differentiate \( f(x) \):
\[
f(x)=\left[\cot(2x+1)\right]^3.
\]
Using the chain rule:
\[
\frac{d f}{dx}=3\left[\cot(2x+1)\right]^2\cdot \frac{d}{dx}\left[\cot(2x+1)\right].
\]
We have:
\[
\frac{d}{dx}\left[\cot(2x+1)\right] = -\mathrm{cosec}^{2}(2x+1)\cdot (2),
\]
so:
\[
\frac{d f}{dx} = 3\left[\cot(2x+1)\right]^2\cdot\left(-2\,\mathrm{cosec}^{2}(2x+1)\right) = -6\left[\cot(2x+1)\right]^2\,\mathrm{cosec}^{2}(2x+1).
\]
Therefore,
\[
\frac{d f}{du}=\frac{-6\left[\cot(2x+1)\right]^2\,\mathrm{cosec}^{2}(2x+1)}{2x} = -\frac{3\left[\cot(2x+1)\right]^2\,\mathrm{cosec}^{2}(2x+1)}{x}.
\]
Final Answer:
\(\displaystyle -\frac{3\,\cot^{2}(2x+1)\,\mathrm{cosec}^{2}(2x+1)}{x}\)
Question:
8(iv) Differentiate \(\log (\sin x)\) with respect to \(\sqrt{\cos x}\).
Solution:
Let
\[
u = \sqrt{\cos x} = (\cos x)^{\frac{1}{2}},
\]
and the function is
\[
f(x)=\log (\sin x).
\]
We use the chain rule:
\[
\frac{d f}{d u} = \frac{\frac{d f}{d x}}{\frac{d u}{d x}}.
\]
First, differentiate \(f(x)\) with respect to \(x\):
\[
\frac{d}{dx}\left(\log (\sin x)\right) = \frac{\cos x}{\sin x} = \cot x.
\]
Next, differentiate \(u\) with respect to \(x\):
\[
\frac{d u}{dx} = \frac{1}{2}(\cos x)^{-\frac{1}{2}}(-\sin x)
= -\frac{\sin x}{2\sqrt{\cos x}}.
\]
Thus,
\[
\frac{d f}{d u} = \frac{\cot x}{-\frac{\sin x}{2\sqrt{\cos x}}}
= -2\sqrt{\cos x}\cdot \frac{\cot x}{\sin x}.
\]
Since \(\cot x = \frac{\cos x}{\sin x}\), we have:
\[
\frac{d f}{d u} = -2\sqrt{\cos x}\cdot \frac{\cos x}{\sin^2 x}
= -2\sqrt{\cos x}\, \cot x\, \mathrm{cosec}\, x.
\]
Final Answer:
\(\displaystyle -2\sqrt{\cos x}\, \cot x\, \mathrm{cosec}\, x\)
Question:
9(i) Differentiate \(\sin^{-1}\left(\frac{2x}{1+x^{2}}\right)\) with respect to \(\tan^{-1}x\).
Solution:
Let
\[
y=\sin^{-1}\left(\frac{2x}{1+x^{2}}\right) \quad \text{and} \quad u=\tan^{-1}x.
\]
We use the chain rule:
\[
\frac{dy}{du}=\frac{\frac{dy}{dx}}{\frac{du}{dx}}.
\]
\(\underline{\text{Step 1: Compute } \frac{du}{dx}}\)
Since
\[
u=\tan^{-1}x,\quad \frac{du}{dx}=\frac{1}{1+x^{2}}.
\]
\(\underline{\text{Step 2: Compute } \frac{dy}{dx}}\)
Write
\[
y=\sin^{-1}(z) \quad \text{where} \quad z=\frac{2x}{1+x^{2}}.
\]
Then,
\[
\frac{dy}{dz}=\frac{1}{\sqrt{1-z^{2}}}.
\]
Differentiate \(z\) with respect to \(x\) using the quotient rule:
\[
\frac{dz}{dx}=\frac{(1+x^{2})\cdot 2-2x\cdot 2x}{(1+x^{2})^{2}}
=\frac{2(1+x^{2})-4x^{2}}{(1+x^{2})^{2}}
=\frac{2(1-x^{2})}{(1+x^{2})^{2}}.
\]
Next, compute \(1-z^{2}\):
\[
z^{2}=\frac{4x^{2}}{(1+x^{2})^{2}},\quad 1-z^{2}=\frac{(1+x^{2})^{2}-4x^{2}}{(1+x^{2})^{2}}
=\frac{(1-x^{2})^{2}}{(1+x^{2})^{2}}.
\]
Therefore,
\[
\sqrt{1-z^{2}}=\frac{|1-x^{2}|}{1+x^{2}}.
\]
Assuming \(|x|<1\) so that \(1-x^{2}>0\), we have:
\[
\sqrt{1-z^{2}}=\frac{1-x^{2}}{1+x^{2}}.
\]
Then,
\[
\frac{dy}{dz}=\frac{1+x^{2}}{1-x^{2}}.
\]
Hence,
\[
\frac{dy}{dx}=\frac{dy}{dz}\cdot \frac{dz}{dx}
=\frac{1+x^{2}}{1-x^{2}} \cdot \frac{2(1-x^{2})}{(1+x^{2})^{2}}
=\frac{2}{1+x^{2}}.
\]
\(\underline{\text{Step 3: Compute } \frac{dy}{du}}\)
Using
\[
\frac{dy}{du}=\frac{\frac{dy}{dx}}{\frac{du}{dx}}
=\frac{\frac{2}{1+x^{2}}}{\frac{1}{1+x^{2}}}
=2.
\]
Final Answer:
\(\displaystyle 2\)
Question:
9(ii) Differentiate \(\tan^{-1}\left(\frac{2x}{1-x^{2}}\right)\) with respect to \(\tan^{-1} x\).
Solution:
Let
\[
y=\tan^{-1}\left(\frac{2x}{1-x^{2}}\right) \quad \text{and} \quad u=\tan^{-1}x.
\]
We use the chain rule:
\[
\frac{dy}{du}=\frac{\frac{dy}{dx}}{\frac{du}{dx}}.
\]
\(\underline{\text{Step 1: Compute } \frac{du}{dx}}\)
Since
\[
u=\tan^{-1}x,\quad \frac{du}{dx}=\frac{1}{1+x^{2}}.
\]
\(\underline{\text{Step 2: Compute } \frac{dy}{dx}}\)
Write
\[
y=\tan^{-1}(z) \quad \text{where} \quad z=\frac{2x}{1-x^{2}}.
\]
Then,
\[
\frac{dy}{dz}=\frac{1}{1+z^{2}}.
\]
Differentiating \(z\) with respect to \(x\) using the quotient rule:
\[
\frac{dz}{dx}=\frac{(1-x^{2})\cdot 2 – 2x\cdot(-2x)}{(1-x^{2})^{2}}
=\frac{2(1-x^{2})+4x^{2}}{(1-x^{2})^{2}}
=\frac{2(1+x^{2})}{(1-x^{2})^{2}}.
\]
Next, compute \(1+z^{2}\):
\[
z^{2}=\frac{4x^{2}}{(1-x^{2})^{2}},\quad 1+z^{2}=\frac{(1-x^{2})^{2}+4x^{2}}{(1-x^{2})^{2}}
=\frac{1+2x^{2}+x^{4}}{(1-x^{2})^{2}}
=\frac{(1+x^{2})^{2}}{(1-x^{2})^{2}}.
\]
Thus,
\[
\frac{dy}{dz}=\frac{1}{1+z^{2}}=\frac{(1-x^{2})^{2}}{(1+x^{2})^{2}}.
\]
Hence,
\[
\frac{dy}{dx}=\frac{dy}{dz}\cdot \frac{dz}{dx}
=\frac{(1-x^{2})^{2}}{(1+x^{2})^{2}} \cdot \frac{2(1+x^{2})}{(1-x^{2})^{2}}
=\frac{2}{1+x^{2}}.
\]
\(\underline{\text{Step 3: Compute } \frac{dy}{du}}\)
Using
\[
\frac{dy}{du}=\frac{\frac{dy}{dx}}{\frac{du}{dx}}
=\frac{\frac{2}{1+x^{2}}}{\frac{1}{1+x^{2}}}
=2.
\]
Final Answer:
\(\displaystyle 2\)
Question:
10. Differentiate \( \cos^{-1}\left(\frac{1}{\sqrt{1+t^{2}}}\right) \) w.r.t. \( \sin^{-1}\left(\frac{t}{\sqrt{1+t^{2}}}\right) \).
Solution:
Let
\( x = \sin^{-1}\left(\frac{t}{\sqrt{1+t^{2}}}\right) \) and
\( y = \cos^{-1}\left(\frac{1}{\sqrt{1+t^{2}}}\right) \).
Consider,
\[
\sin x = \frac{t}{\sqrt{1+t^{2}}}
\]
Then,
\[
\cos x = \sqrt{1 – \sin^2 x}
= \sqrt{1 – \left( \frac{t}{\sqrt{1+t^{2}}} \right)^2}
= \sqrt{ \frac{1+t^{2} – t^{2}}{1+t^{2}} }
= \sqrt{ \frac{1}{1+t^{2}} }
= \frac{1}{\sqrt{1+t^{2}}}
\]
Therefore,
\[
\cos^{-1}\left( \frac{1}{\sqrt{1+t^{2}}} \right) = x = \sin^{-1}\left( \frac{t}{\sqrt{1+t^{2}}} \right)
\]
Hence,
\[
y = x \Rightarrow \frac{dy}{dx} = 1
\]
Final Answer:
\( \frac{dy}{dx} = 1 \)
Question:
11(i) Differentiate \(\sin^{-1}\left(\frac{2x}{1+x^{2}}\right)\) with respect to \(\cos^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\).
Solution:
Let
\[
y=\sin^{-1}\left(\frac{2x}{1+x^{2}}\right) \quad \text{and} \quad u=\cos^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right).
\]
We differentiate \(y\) and \(u\) with respect to \(x\) and then form the ratio:
\[
\frac{dy}{du}=\frac{\frac{dy}{dx}}{\frac{du}{dx}}.
\]
A key observation is obtained by substituting
\[
x=\tan \theta.
\]
Then, using the double-angle formulas:
\[
\sin y=\frac{2\tan \theta}{1+\tan^{2}\theta}=\sin(2\theta) \quad \Longrightarrow \quad y=2\theta,
\]
and
\[
\cos u=\frac{1-\tan^{2}\theta}{1+\tan^{2}\theta}=\cos(2\theta) \quad \Longrightarrow \quad u=2\theta.
\]
Thus, we have
\[
y=u.
\]
Differentiating \(y\) with respect to \(u\) gives:
\[
\frac{dy}{du}=1.
\]
Final Answer:
\(\displaystyle 1\)
Question:
11(ii) Differentiate \(\tan^{-1}\frac{3x-x^{3}}{1-3x^{2}}\) with respect to \(\tan^{-1}\frac{2x}{1-x^{2}}\).
Solution:
Let
\[
y=\tan^{-1}\frac{3x-x^{3}}{1-3x^{2}} \quad \text{and} \quad u=\tan^{-1}\frac{2x}{1-x^{2}}.
\]
Substitute
\[
x=\tan\theta.
\]
Then, using the tangent multiple-angle formulas, we have:
\[
\frac{3x-x^{3}}{1-3x^{2}}=\frac{3\tan\theta-\tan^{3}\theta}{1-3\tan^{2}\theta}=\tan(3\theta),
\]
and
\[
\frac{2x}{1-x^{2}}=\frac{2\tan\theta}{1-\tan^{2}\theta}=\tan(2\theta).
\]
Therefore,
\[
y=\tan^{-1}\big(\tan 3\theta\big)=3\theta \quad \text{and} \quad u=\tan^{-1}\big(\tan 2\theta\big)=2\theta.
\]
Expressing \(y\) in terms of \(u\):
\[
y=\frac{3}{2}u.
\]
Differentiating with respect to \(u\):
\[
\frac{dy}{du}=\frac{3}{2}.
\]
Final Answer:
\(\displaystyle \frac{3}{2}\)
Question:
12(i) Differentiate \(\tan^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)\) with respect to \(\tan^{-1}x\).
Solution:
Let
\[
y=\tan^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right) \quad \text{and} \quad u=\tan^{-1}x.
\]
Then by the chain rule,
\[
\frac{dy}{du}=\frac{\frac{dy}{dx}}{\frac{du}{dx}}.
\]
First, we have
\[
\frac{du}{dx}=\frac{1}{1+x^{2}}.
\]
Next, write
\[
y=\tan^{-1}(z),\quad \text{where} \quad z=\frac{\sqrt{1+x^{2}}-1}{x}.
\]
Then,
\[
\frac{dy}{dz}=\frac{1}{1+z^{2}}.
\]
To find \(\frac{dz}{dx}\), note that
\[
z=\frac{\sqrt{1+x^{2}}-1}{x}.
\]
Differentiating the numerator:
\[
\frac{d}{dx}\left(\sqrt{1+x^{2}}-1\right)=\frac{x}{\sqrt{1+x^{2}}}.
\]
Using the quotient rule,
\[
\frac{dz}{dx}=\frac{x\left(\frac{x}{\sqrt{1+x^{2}}}\right)-\left(\sqrt{1+x^{2}}-1\right)}{x^{2}}
=\frac{\frac{x^{2}}{\sqrt{1+x^{2}}}-\left(\sqrt{1+x^{2}}-1\right)}{x^{2}}.
\]
Simplify the numerator by writing it as:
\[
\frac{x^{2}}{\sqrt{1+x^{2}}}-\sqrt{1+x^{2}}+1
=\frac{x^{2}-(1+x^{2})+ \sqrt{1+x^{2}}}{\sqrt{1+x^{2}}}
=\frac{-1+\sqrt{1+x^{2}}}{\sqrt{1+x^{2}}}.
\]
Thus,
\[
\frac{dz}{dx}=\frac{1-\frac{1}{\sqrt{1+x^{2}}}}{x^{2}}.
\]
Therefore,
\[
\frac{dy}{dx}=\frac{dy}{dz}\cdot \frac{dz}{dx}
=\frac{1}{1+z^{2}}\cdot \frac{1-\frac{1}{\sqrt{1+x^{2}}}}{x^{2}}.
\]
Now, compute \(z^{2}\):
\[
z^{2}=\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)^{2}
=\frac{(\sqrt{1+x^{2}}-1)^{2}}{x^{2}}.
\]
Notice that
\[
(\sqrt{1+x^{2}}-1)^{2}=1+x^{2}-2\sqrt{1+x^{2}}+1
=x^{2}+2-2\sqrt{1+x^{2}}.
\]
Hence,
\[
1+z^{2}=\frac{2x^{2}+2-2\sqrt{1+x^{2}}}{x^{2}}
=\frac{2\left(x^{2}+1-\sqrt{1+x^{2}}\right)}{x^{2}}.
\]
Thus,
\[
\frac{1}{1+z^{2}}=\frac{x^{2}}{2\left(x^{2}+1-\sqrt{1+x^{2}}\right)}.
\]
Substituting back, we obtain:
\[
\frac{dy}{dx}=\frac{x^{2}}{2\left(x^{2}+1-\sqrt{1+x^{2}}\right)}\cdot \frac{1-\frac{1}{\sqrt{1+x^{2}}}}{x^{2}}
=\frac{1-\frac{1}{\sqrt{1+x^{2}}}}{2\left(x^{2}+1-\sqrt{1+x^{2}}\right)}.
\]
Now, using the chain rule,
\[
\frac{dy}{du}=\frac{\frac{dy}{dx}}{\frac{du}{dx}}
=\frac{\frac{1-\frac{1}{\sqrt{1+x^{2}}}}{2\left(x^{2}+1-\sqrt{1+x^{2}}\right)}}{\frac{1}{1+x^{2}}}
=\frac{1-\frac{1}{\sqrt{1+x^{2}}}}{2\left(x^{2}+1-\sqrt{1+x^{2}}\right)}\cdot (1+x^{2}).
\]
Notice that \(1+x^{2}=(\sqrt{1+x^{2}})^{2}\). Hence,
\[
\frac{dy}{du}=\frac{(\sqrt{1+x^{2}})^{2}\left(1-\frac{1}{\sqrt{1+x^{2}}}\right)}{2\left((\sqrt{1+x^{2}})^{2}-\sqrt{1+x^{2}}\right)}
=\frac{\sqrt{1+x^{2}}\left(\sqrt{1+x^{2}}-1\right)}{2\sqrt{1+x^{2}}\left(\sqrt{1+x^{2}}-1\right)}
=\frac{1}{2}.
\]
Final Answer:
\(\displaystyle \frac{1}{2}\)
Question:
12(ii) Differentiate \( \tan^{-1}\left(\frac{\sqrt{1-x^{2}}}{x}\right) \) with respect to \( \cos^{-1}\left(2x\sqrt{1-x^{2}}\right) \).
Solution:
Let
\[
u(x)= \tan^{-1}\left(\frac{\sqrt{1-x^{2}}}{x}\right)
\quad\text{and}\quad
v(x)= \cos^{-1}\left(2x\sqrt{1-x^{2}}\right).
\]
Using the substitution \( x=\cos \theta \) (so that \(\sqrt{1-x^{2}}=\sin \theta\)), we obtain:
\[
u(x)= \tan^{-1}\left(\frac{\sin \theta}{\cos \theta}\right)= \theta = \cos^{-1}(x).
\]
Hence,
\[
u'(x)= \frac{d}{dx}\cos^{-1}(x) = -\frac{1}{\sqrt{1-x^{2}}}.
\]
Also,
\[
v(x)= \cos^{-1}\left(2\cos \theta \sin \theta\right) = \cos^{-1}\left(\sin 2\theta\right).
\]
Since \(\sin 2\theta=\cos\left(\frac{\pi}{2}-2\theta\right)\) and assuming the angle \(\frac{\pi}{2}-2\theta\) lies in \([0,\pi]\), we have:
\[
v(x)= \frac{\pi}{2} – 2\theta = \frac{\pi}{2} – 2\cos^{-1}(x).
\]
Differentiating \(v(x)\) with respect to \(x\) gives:
\[
v'(x)= -2\frac{d}{dx}\cos^{-1}(x)= -2\left(-\frac{1}{\sqrt{1-x^{2}}}\right)= \frac{2}{\sqrt{1-x^{2}}}.
\]
Therefore, the derivative of \(u\) with respect to \(v\) is:
\[
\frac{du}{dv}= \frac{u'(x)}{v'(x)}= \frac{-\frac{1}{\sqrt{1-x^{2}}}}{\frac{2}{\sqrt{1-x^{2}}}}= -\frac{1}{2}.
\]
Final Answer:
\(\displaystyle -\frac{1}{2}\).
Question:
13. Prove that the derivative of \(
\tan^{-1}\left(\frac{x}{1+\sqrt{1-x^2}}\right)\) with respect to \(\sin^{-1} x\) is independent of \( x \).
Solution:
We start by letting
\[
u(x)= \tan^{-1}\left(\frac{x}{1+\sqrt{1-x^2}}\right)
\quad\text{and}\quad
v(x)= \sin^{-1} x.
\]
Notice that by the half-angle formula, we have
\[
\tan\frac{v}{2}= \frac{\sin v}{1+\cos v}.
\]
Since \( v=\sin^{-1} x \) implies \(\sin v=x\) and \(\cos v=\sqrt{1-x^2}\), it follows that
\[
\tan\frac{v}{2}= \frac{x}{1+\sqrt{1-x^2}}.
\]
Hence,
\[
u(x)= \tan^{-1}\left(\tan\frac{v}{2}\right)= \frac{v}{2}.
\]
Differentiating \( u \) with respect to \( v \) yields
\[
\frac{du}{dv}= \frac{1}{2}.
\]
This result is independent of \( x \), which completes the proof.
Final Answer:
\(\displaystyle \frac{1}{2}\).
Question:
14. Differentiate \( x^{x} \) with respect to \( x\log x \).
Solution:
Let
\[
y=x^{x}.
\]
Express \( y \) in exponential form:
\[
y=e^{x \log x}.
\]
Define
\[
u=x \log x.
\]
Then,
\[
y=e^{u}.
\]
Differentiating \( y \) with respect to \( u \) gives:
\[
\frac{dy}{du}=e^{u}.
\]
Since \( e^{u}=e^{x \log x}=x^{x} \), the derivative of \( y \) with respect to \( x \log x \) is:
\[
\frac{dy}{d(x \log x)}=x^{x}.
\]
Final Answer:
\(\displaystyle x^{x}\).