Here is the complete ML Aggarwal Class 12 Solutions of Exercise – 5.11 for Chapter 5 – Continuity and Differentiability. Each question is solved step by step for better understanding.
Question:
1. (i) Differentiate \( (x+3)^{2}(x+4)^{3}(x+5)^{4} \) with respect to \( x \).
Solution:
Let
\[
y = (x+3)^{2}(x+4)^{3}(x+5)^{4}.
\]
Taking the natural logarithm of both sides, we have:
\[
\log y = 2\log(x+3) + 3\log(x+4) + 4\log(x+5).
\]
Differentiating both sides with respect to \( x \):
\[
\frac{1}{y}\frac{dy}{dx} = \frac{2}{x+3} + \frac{3}{x+4} + \frac{4}{x+5}.
\]
Multiplying through by \( y \) gives:
\[
\frac{dy}{dx} = (x+3)^{2}(x+4)^{3}(x+5)^{4}\left(\frac{2}{x+3} + \frac{3}{x+4} + \frac{4}{x+5}\right).
\]
Final Answer:
\[
\frac{dy}{dx} = (x+3)^{2}(x+4)^{3}(x+5)^{4}\left(\frac{2}{x+3} + \frac{3}{x+4} + \frac{4}{x+5}\right).
\]
Question:
1. (ii) Differentiate \( \cos x \cos 2x \cos 3x \) with respect to \( x \).
Solution:
Let
\[
y = \cos x \cos 2x \cos 3x.
\]
Taking the natural logarithm on both sides, we write:
\[
\text{log}\, y = \text{log} (\cos x) + \text{log} (\cos 2x) + \text{log} (\cos 3x).
\]
Differentiating with respect to \( x \):
\[
\frac{1}{y}\frac{dy}{dx} = -\tan x – 2\tan 2x – 3\tan 3x.
\]
Multiplying both sides by \( y \) gives:
\[
\frac{dy}{dx} = -\cos x \cos 2x \cos 3x \left(\tan x + 2\tan 2x + 3\tan 3x\right).
\]
Final Answer:
\[
\frac{dy}{dx} = -\cos x \cos 2x \cos 3x \left(\tan x + 2\tan 2x + 3\tan 3x\right).
\]
Question:
2. (i) Differentiate
\[
\frac{x\sqrt{x^2+1}}{(x+1)^{2/3}}, \quad x>0,
\]
with respect to \( x \).
Solution:
Let
\[
y = x\,(x^2+1)^{1/2}\,(x+1)^{-2/3}.
\]
Taking the natural logarithm on both sides, we have:
\[
\text{log}\, y = \text{log}\, x + \frac{1}{2}\,\text{log}(x^2+1) – \frac{2}{3}\,\text{log}(x+1).
\]
Differentiating with respect to \( x \):
\[
\frac{1}{y}\frac{dy}{dx} = \frac{1}{x} + \frac{1}{2}\cdot\frac{2x}{x^2+1} – \frac{2}{3}\cdot\frac{1}{x+1}.
\]
Simplifying:
\[
\frac{1}{y}\frac{dy}{dx} = \frac{1}{x} + \frac{x}{x^2+1} – \frac{2}{3(x+1)}.
\]
Multiplying by \( y \):
\[
\frac{dy}{dx} = \frac{x\sqrt{x^2+1}}{(x+1)^{2/3}}\left(\frac{1}{x} + \frac{x}{x^2+1} – \frac{2}{3(x+1)}\right).
\]
Final Answer:
\[
\frac{dy}{dx} = \frac{x\sqrt{x^2+1}}{(x+1)^{2/3}}\left(\frac{1}{x} + \frac{x}{x^2+1} – \frac{2}{3(x+1)}\right).
\]
Question:
2. (ii) Differentiate
\[
\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}},
\]
with respect to \( x \).
Solution:
Let
\[
y=\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}.
\]
We rewrite \( y \) as
\[
y=\left[\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}\right]^{\frac{1}{2}}.
\]
Taking the natural logarithm on both sides:
\[
\text{log}\, y=\frac{1}{2}\left\{\text{log}\,\big[(x-1)(x-2)\big]-\text{log}\,\big[(x-3)(x-4)(x-5)\big]\right\}.
\]
Differentiating with respect to \( x \):
\[
\frac{1}{y}\frac{dy}{dx}=\frac{1}{2}\left[\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5}\right].
\]
Multiplying both sides by \( y \) gives:
\[
\frac{dy}{dx}=\frac{1}{2}\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}\left[\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5}\right].
\]
Final Answer:
\[
\frac{dy}{dx}=\frac{1}{2}\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}\left[\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5}\right].
\]
Question 3(i):
Differentiate
\[
f(x)=e^{x}\cos^{3}x\,\sin^{2}x
\]
with respect to \( x \).
Solution:
We begin with
\[
f(x)=e^{x}\cos^{3}x\,\sin^{2}x.
\]
Using the product rule,
\[
f'(x)=e^{x}\cos^{3}x\,\sin^{2}x+e^{x}\frac{d}{dx}\Bigl(\cos^{3}x\,\sin^{2}x\Bigr).
\]
Let
\[
u(x)=\cos^{3}x\,\sin^{2}x.
\]
Then,
\[
u'(x)=\frac{d}{dx}\Bigl(\cos^{3}x\Bigr)\sin^{2}x+\cos^{3}x\,\frac{d}{dx}\Bigl(\sin^{2}x\Bigr).
\]
Since
\[
\frac{d}{dx}\Bigl(\cos^{3}x\Bigr)=3\cos^{2}x\cdot\Bigl(-\sin x\Bigr)=-3\cos^{2}x\,\sin x,
\]
and
\[
\frac{d}{dx}\Bigl(\sin^{2}x\Bigr)=2\sin x\,\cos x,
\]
we have
\[
u'(x)=-3\cos^{2}x\,\sin x\cdot \sin^{2}x+2\cos^{3}x\,\sin x\,\cos x.
\]
This simplifies to:
\[
u'(x)=-3\cos^{2}x\,\sin^{3}x+2\cos^{4}x\,\sin x.
\]
Substituting back,
\[
f'(x)=e^{x}\cos^{3}x\,\sin^{2}x+e^{x}\Bigl[-3\cos^{2}x\,\sin^{3}x+2\cos^{4}x\,\sin x\Bigr].
\]
Factoring out \( e^{x}\cos^{2}x\,\sin x \):
\[
f'(x)=e^{x}\cos^{2}x\,\sin x\Bigl[\cos x\,\sin x-3\sin^{2}x+2\cos^{2}x\Bigr].
\]
Recognizing that
\[
\tan x=\frac{\sin x}{\cos x} \quad \text{and} \quad \cot x=\frac{\cos x}{\sin x},
\]
we can write:
\[
f'(x)=e^{x}\cos^{3}x\,\sin^{2}x\Bigl[1-3\tan x+2\cot x\Bigr].
\]
Final Answer:
\[
f'(x)=e^{x}\cos^{3}x\,\sin^{2}x\Bigl[1-3\tan x+2\cot x\Bigr].
\]
Question 3(ii):
Differentiate
\[
f(x)=\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}
\]
with respect to \( x \).
Solution:
We express
\[
f(x)=\left[\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}\right]^{\frac{1}{2}}.
\]
Taking natural logarithms on both sides, we obtain:
\[
\log f(x)=\frac{1}{2}\Bigl[\log\bigl((x-1)(x-2)\bigr)-\log\bigl((x-3)(x-4)(x-5)\bigr)\Bigr].
\]
Differentiating both sides with respect to \( x \) using the chain rule:
\[
\frac{f'(x)}{f(x)}=\frac{1}{2}\Biggl[\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5}\Biggr].
\]
Multiplying by \( f(x) \) yields:
\[
f'(x)=\frac{1}{2}f(x)\Biggl[\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5}\Biggr].
\]
Substituting back \( f(x)=\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}} \), we have:
\[
f'(x)=\frac{1}{2}\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}\Biggl[\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5}\Biggr].
\]
Final Answer:
\[
f'(x)=\frac{1}{2}\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}\Biggl[\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5}\Biggr].
\]
Question 4(i):
Differentiate
\[
f(x) = (\sin x)^{\cos x}, \quad 0 < x < \pi
\]
with respect to \( x \).
Solution:
Let
\[
f(x) = (\sin x)^{\cos x}.
\]
Taking natural logarithm on both sides:
\[
\log f(x) = \cos x \cdot \log(\sin x).
\]
Differentiating both sides using the chain rule and product rule:
\[
\frac{f'(x)}{f(x)} = \frac{d}{dx} \left[ \cos x \cdot \log(\sin x) \right]
= -\sin x \cdot \log(\sin x) + \cos x \cdot \frac{\cos x}{\sin x}.
\]
Simplifying:
\[
\frac{f'(x)}{f(x)} = -\sin x \cdot \log(\sin x) + \frac{\cos^2 x}{\sin x}.
\]
Multiply both sides by \( f(x) = (\sin x)^{\cos x} \):
\[
f'(x) = (\sin x)^{\cos x} \left( -\sin x \cdot \log(\sin x) + \frac{\cos^2 x}{\sin x} \right).
\]
We can also factor as:
\[
f'(x) = (\sin x)^{\cos x} \left( \cos x \cdot \cot x – \sin x \cdot \log(\sin x) \right).
\]
Final Answer:
\[
\frac{d}{dx} \left[(\sin x)^{\cos x}\right] = (\sin x)^{\cos x} \left( \cos x \cdot \cot x – \sin x \cdot \log(\sin x) \right).
\]
Question 4(ii):
Differentiate
\[
f(x) = (\sin x)^{\sin x}, \quad 0 < x < \pi
\]
with respect to \( x \).
Solution:
Let
\[
f(x) = (\sin x)^{\sin x}.
\]
Taking logarithm on both sides:
\[
\log f(x) = \sin x \cdot \log(\sin x).
\]
Differentiating both sides with respect to \( x \):
\[
\frac{f'(x)}{f(x)} = \cos x \cdot \log(\sin x) + \sin x \cdot \frac{\cos x}{\sin x}.
\]
Simplify:
\[
\frac{f'(x)}{f(x)} = \cos x \cdot \log(\sin x) + \cos x = \cos x \left(1 + \log(\sin x)\right).
\]
Multiplying both sides by \( f(x) = (\sin x)^{\sin x} \), we get:
\[
f'(x) = (\sin x)^{\sin x} \cdot \cos x \left(1 + \log(\sin x)\right).
\]
Final Answer:
\[
\frac{d}{dx} \left[(\sin x)^{\sin x}\right] = (\sin x)^{\sin x} \cdot \cos x \left(1 + \log(\sin x)\right).
\]
Question 5(i):
Differentiate
\[
f(x)=x^{\sin x}
\]
with respect to \( x \).
Solution:
We rewrite the function as:
\[
f(x)=\exp\Bigl(\sin x\cdot \log x\Bigr),
\]
where \(\log x\) denotes the full logarithm.
Differentiating using the chain rule:
\[
f'(x)=\exp\Bigl(\sin x\cdot \log x\Bigr) \cdot \frac{d}{dx}\Bigl(\sin x\cdot \log x\Bigr).
\]
Applying the product rule to \(\sin x\cdot \log x\):
\[
\frac{d}{dx}\Bigl(\sin x\cdot \log x\Bigr)=\cos x\cdot \log x+\sin x\cdot \frac{1}{x}.
\]
Therefore, the derivative is:
\[
f'(x)=x^{\sin x}\left(\cos x\cdot \log x+\frac{\sin x}{x}\right).
\]
Final Answer:
\[
f'(x)=x^{\sin x}\left(\cos x\cdot \log x+\frac{\sin x}{x}\right).
\]
Question 5(ii):
Differentiate
\[
f(x) = (2x+3)^{x-5}, \quad x>-\frac{3}{2}
\]
with respect to \( x \).
Solution:
We write
\[
f(x) = (2x+3)^{x-5}.
\]
Taking logarithm on both sides, we have:
\[
\log f(x) = (x-5) \cdot \log(2x+3).
\]
Differentiating both sides with respect to \( x \) using the product rule:
\[
\frac{f'(x)}{f(x)} = \frac{d}{dx}\Bigl[(x-5) \cdot \log(2x+3)\Bigr]
= \log(2x+3) + (x-5)\cdot \frac{2}{2x+3}.
\]
Multiplying both sides by \( f(x) \), we obtain:
\[
f'(x) = (2x+3)^{x-5}\left[\log(2x+3) + \frac{2(x-5)}{2x+3}\right].
\]
Final Answer:
\[
f'(x) = (2x+3)^{x-5}\left[\log(2x+3) + \frac{2(x-5)}{2x+3}\right].
\]
Question 6(i):
Differentiate
\[
f(x) = (\log x)^{\cos x}, \quad x > 1
\]
with respect to \( x \).
Solution:
Let
\[
f(x) = (\log x)^{\cos x}.
\]
Taking logarithm on both sides:
\[
\log f(x) = \cos x \cdot \log(\log x).
\]
Differentiating both sides:
\[
\frac{f'(x)}{f(x)} = -\sin x \cdot \log(\log x) + \cos x \cdot \frac{1}{\log x} \cdot \frac{1}{x}.
\]
Simplifying:
\[
\frac{f'(x)}{f(x)} = \frac{\cos x}{x \log x} – \sin x \cdot \log(\log x).
\]
Multiply both sides by \( f(x) = (\log x)^{\cos x} \):
\[
f'(x) = (\log x)^{\cos x} \left[\frac{\cos x}{x \log x} – \sin x \cdot \log(\log x)\right].
\]
Final Answer:
\[
f'(x) = (\log x)^{\cos x} \left[\frac{\cos x}{x \log x} – \sin x \cdot \log(\log x)\right].
\]
Question 6(ii):
Differentiate
\[
f(x) = (\log x)^{\log x}, \quad x > 1
\]
with respect to \( x \).
Solution:
We begin with
\[
f(x) = (\log x)^{\log x}.
\]
Taking logarithm on both sides:
\[
\log f(x) = \log x \cdot \log(\log x).
\]
Differentiating both sides with respect to \( x \) using the product rule, we obtain:
\[
\frac{f'(x)}{f(x)} = \frac{d}{dx}\Bigl[\log x \cdot \log(\log x)\Bigr]
= \frac{1}{x} \cdot \log(\log x) + \log x \cdot \frac{1}{\log x}\cdot\frac{1}{x}.
\]
Simplify the second term:
\[
\log x \cdot \frac{1}{\log x}\cdot\frac{1}{x} = \frac{1}{x}.
\]
Thus,
\[
\frac{f'(x)}{f(x)} = \frac{1}{x}\Bigl[\log(\log x)+1\Bigr].
\]
Multiplying both sides by \( f(x) \) gives:
\[
f'(x) = (\log x)^{\log x}\cdot\frac{1}{x}\Bigl[\log(\log x)+1\Bigr].
\]
Final Answer:
\[
f'(x) = (\log x)^{\log x}\cdot\frac{1}{x}\Bigl[\log(\log x)+1\Bigr].
\]
Question 7(i):
Differentiate \( x^{\sin x+\cos x} \) with respect to \( x \).
Solution:
Let
\[
y = x^{\sin x+\cos x}.
\]
Taking the natural logarithm on both sides, we have
\[
\text{log}\,y = (\sin x+\cos x)\,\text{log}\,x.
\]
Differentiating both sides with respect to \( x \) yields
\[
\frac{1}{y}\frac{dy}{dx} = \frac{d}{dx}\left[(\sin x+\cos x)\,\text{log}\,x\right].
\]
Applying the product rule on the right side, we obtain
\[
\frac{1}{y}\frac{dy}{dx} = (\cos x-\sin x)\,\text{log}\,x + (\sin x+\cos x)\frac{1}{x}.
\]
Multiplying both sides by \( y \) gives
\[
\frac{dy}{dx} = y\left[(\cos x-\sin x)\,\text{log}\,x + \frac{\sin x+\cos x}{x}\right].
\]
Substituting back \( y = x^{\sin x+\cos x} \), we finally have
\[
\frac{dy}{dx} = x^{\sin x+\cos x}\left[\frac{\sin x+\cos x}{x}+(\cos x-\sin x)\,\text{log}\,x\right].
\]
Final Answer:
\[
\frac{dy}{dx} = x^{\sin x+\cos x}\left[\frac{\sin x+\cos x}{x}+(\cos x-\sin x)\,\text{log}\,x\right].
\]
Question 7(ii):
Differentiate \( \left(x^{2}\sin x\right)^{\frac{1}{x}} \) with respect to \( x \).
Solution:
Let
\[
y=\left(x^{2}\sin x\right)^{\frac{1}{x}}.
\]
Taking the natural logarithm on both sides, we obtain
\[
\text{log}\,y=\frac{1}{x}\,\text{log}\,(x^{2}\sin x).
\]
Differentiate both sides with respect to \( x \):
\[
\frac{1}{y}\frac{dy}{dx}=\frac{d}{dx}\left(\frac{1}{x}\,\text{log}\,(x^{2}\sin x)\right).
\]
Write the right-hand side as
\[
\frac{1}{x}\,\text{log}\,(x^{2}\sin x)=\frac{2\,\text{log}\,x+\text{log}\,(\sin x)}{x}.
\]
Differentiate using the quotient rule. Let
\[
f(x)=2\,\text{log}\,x+\text{log}\,(\sin x) \quad \text{and} \quad g(x)=x.
\]
Then,
\[
f'(x)=\frac{2}{x}+\cot x \quad \text{and} \quad g'(x)=1.
\]
The quotient rule gives
\[
\frac{d}{dx}\left(\frac{f(x)}{x}\right)=\frac{x\left(\frac{2}{x}+\cot x\right)-\left(2\,\text{log}\,x+\text{log}\,(\sin x)\right)}{x^{2}}.
\]
Simplify the numerator:
\[
x\left(\frac{2}{x}+\cot x\right)=2+x\cot x.
\]
Hence, we obtain
\[
\frac{1}{y}\frac{dy}{dx}=\frac{2+x\cot x-\left(2\,\text{log}\,x+\text{log}\,(\sin x)\right)}{x^{2}}.
\]
Recognize that
\[
2\,\text{log}\,x+\text{log}\,(\sin x)=\text{log}\,(x^{2}\sin x).
\]
Therefore,
\[
\frac{1}{y}\frac{dy}{dx}=\frac{2+x\cot x-\text{log}(x^{2}\sin x)}{x^{2}}.
\]
Multiplying both sides by \( y \), we get
\[
\frac{dy}{dx}=\frac{1}{x^{2}}\left(x^{2}\sin x\right)^{\frac{1}{x}}\left(2+x\cot x-\text{log}(x^{2}\sin x)\right).
\]
Final Answer:
\[
\frac{dy}{dx}=\frac{1}{x^{2}}\left(x^{2}\sin x\right)^{\frac{1}{x}}\left(2+x\cot x-\text{log}(x^{2}\sin x)\right).
\]
Question 8(i):
If \( y=x^y \), prove that
\[
x\frac{dy}{dx}=\frac{y^2}{1-y\,\text{log}\,x}.
\]
Solution:
We are given
\[
y=x^y.
\]
Take the natural logarithm on both sides:
\[
\text{log}\,y = y\,\text{log}\,x.
\]
Differentiate both sides with respect to \( x \):
\[
\frac{1}{y}\frac{dy}{dx} = \frac{dy}{dx}\,\text{log}\,x + \frac{y}{x}.
\]
Rearranging, we have:
\[
\frac{1}{y}\frac{dy}{dx} – \frac{dy}{dx}\,\text{log}\,x = \frac{y}{x}.
\]
Factor out \(\frac{dy}{dx}\) on the left-hand side:
\[
\frac{dy}{dx}\left(\frac{1}{y}-\text{log}\,x\right)=\frac{y}{x}.
\]
Solve for \(\frac{dy}{dx}\):
\[
\frac{dy}{dx}=\frac{y}{x\left(\frac{1}{y}-\text{log}\,x\right)}.
\]
Multiply the numerator and denominator by \( y \) to simplify:
\[
\frac{dy}{dx}=\frac{y^2}{x\left(1-y\,\text{log}\,x\right)}.
\]
Finally, multiplying both sides by \( x \) gives:
\[
x\frac{dy}{dx}=\frac{y^2}{1-y\,\text{log}\,x}.
\]
Final Answer:
\[
x\frac{dy}{dx}=\frac{y^2}{1-y\,\text{log}\,x}.
\]
Question 8(ii):
If \( x=e^{\frac{x}{y}} \), prove that
\[
\frac{dy}{dx}=\frac{x-y}{x\,\text{log}\,x}.
\]
Solution:
We are given
\[
x=e^{\frac{x}{y}}.
\]
Taking the natural logarithm on both sides, we get
\[
\text{log}\,x=\frac{x}{y}.
\]
Differentiate both sides with respect to \( x \):
\[
\frac{d}{dx}\left(\text{log}\,x\right)=\frac{d}{dx}\left(\frac{x}{y}\right).
\]
The derivative of the left-hand side is
\[
\frac{1}{x}.
\]
For the right-hand side, apply the quotient rule. Let
\[
u=x \quad \text{and} \quad v=y,
\]
so that
\[
u’=1 \quad \text{and} \quad v’=\frac{dy}{dx}.
\]
Then,
\[
\frac{d}{dx}\left(\frac{x}{y}\right)=\frac{y\cdot 1 – x\frac{dy}{dx}}{y^{2}}.
\]
Equating the derivatives, we have
\[
\frac{1}{x}=\frac{y-x\frac{dy}{dx}}{y^{2}}.
\]
Multiply both sides by \( y^{2} \):
\[
\frac{y^{2}}{x}=y-x\frac{dy}{dx}.
\]
Rearranging the terms, we obtain
\[
x\frac{dy}{dx}=y-\frac{y^{2}}{x}.
\]
Factor \( y \) in the right-hand side:
\[
x\frac{dy}{dx}=\frac{y(x-y)}{x}.
\]
Dividing both sides by \( x \) gives
\[
\frac{dy}{dx}=\frac{y(x-y)}{x^{2}}.
\]
From the original equation \( \text{log}\,x=\frac{x}{y} \), we can express \( y \) as
\[
y=\frac{x}{\text{log}\,x}.
\]
Substituting this into our expression for \( \frac{dy}{dx} \) yields
\[
\frac{dy}{dx}=\frac{\frac{x}{\text{log}\,x}(x-y)}{x^{2}}=\frac{x-y}{x\,\text{log}\,x}.
\]
Final Answer:
\[
\frac{dy}{dx}=\frac{x-y}{x\,\text{log}\,x}.
\]
Question 8(iii):
If \( x^{y}=e^{x-y} \), prove that
\[
\frac{dy}{dx}=\frac{\log x}{(\log x\, e)^{2}}.
\]
Solution:
We are given
\[
x^{y}=e^{x-y}.
\]
Taking the natural logarithm on both sides, we have
\[
\text{log}\,(x^{y})=\text{log}\,(e^{x-y}).
\]
Using the logarithmic identity \(\text{log}\,(a^{b})=b\,\text{log}\,a\) and \(\text{log}\,(e^{u})=u\), this becomes
\[
y\,\text{log}\,x=x-y.
\]
Rearranging, we get
\[
y\,\text{log}\,x + y = x \quad \Longrightarrow \quad y\left(\text{log}\,x+1\right)=x.
\]
Thus,
\[
y=\frac{x}{\text{log}\,x+1}.
\]
Note that \(\text{log}\,x+1\) can be written as \(\text{log}\,(x\,e)\) because
\[
\text{log}\,(x\,e)=\text{log}\,x+\text{log}\,e=\text{log}\,x+1.
\]
Therefore, we can also express \(y\) as
\[
y=\frac{x}{\text{log}\,(x\,e)}.
\]
Differentiating \( y=\frac{x}{\text{log}\,(x\,e)} \) with respect to \( x \) using the quotient rule, let
\[
u=x \quad \text{and} \quad v=\text{log}\,(x\,e).
\]
We have
\[
u’=1 \quad \text{and} \quad v’=\frac{d}{dx}\left(\text{log}\,(x\,e)\right)=\frac{1}{x\,e}\cdot e=\frac{1}{x},
\]
since \( \text{log}\,(x\,e)=\text{log}\,x+1 \) and the derivative of \(\text{log}\,x\) is \(\frac{1}{x}\).
The quotient rule gives:
\[
\frac{dy}{dx}=\frac{v\cdot u’-u\cdot v’}{v^{2}}=\frac{\text{log}\,(x\,e)\cdot 1-x\cdot\frac{1}{x}}{\left[\text{log}\,(x\,e)\right]^{2}}.
\]
Simplifying the numerator:
\[
\text{log}\,(x\,e)-1=\text{log}\,x+1-1=\text{log}\,x.
\]
Therefore, we have
\[
\frac{dy}{dx}=\frac{\text{log}\,x}{\left[\text{log}\,(x\,e)\right]^{2}},
\]
which is the required result.
Final Answer:
\[
\frac{dy}{dx}=\frac{\log x}{(\log x\,e)^{2}}.
\]
Question 8(iv):
If \( x^{16}y^{9}=(x^{2}+y)^{17} \), prove that
\[
\frac{dy}{dx}=\frac{2y}{x}.
\]
Solution:
We start with the given equation:
\[
x^{16}y^{9}=(x^{2}+y)^{17}.
\]
Take the natural logarithm on both sides:
\[
\text{log}\,(x^{16}y^{9})=\text{log}\,(x^{2}+y)^{17}.
\]
Using the logarithm properties, this becomes:
\[
16\,\text{log}\,x+9\,\text{log}\,y=17\,\text{log}\,(x^{2}+y).
\]
Differentiate both sides with respect to \(x\). The derivative of the left-hand side is:
\[
\frac{16}{x}+\frac{9}{y}\frac{dy}{dx}.
\]
For the right-hand side, apply the chain rule:
\[
17\cdot\frac{1}{x^{2}+y}\left(2x+\frac{dy}{dx}\right).
\]
Thus, we have the equation:
\[
\frac{16}{x}+\frac{9}{y}\frac{dy}{dx}=\frac{17\left(2x+\frac{dy}{dx}\right)}{x^{2}+y}.
\]
Multiply both sides by \(x^{2}+y\) to clear the denominator:
\[
\frac{16(x^{2}+y)}{x}+\frac{9(x^{2}+y)}{y}\frac{dy}{dx}=17\left(2x+\frac{dy}{dx}\right).
\]
Rearrange to collect the terms containing \(\frac{dy}{dx}\):
\[
\frac{9(x^{2}+y)}{y}\frac{dy}{dx}-17\frac{dy}{dx}=17\cdot 2x-\frac{16(x^{2}+y)}{x}.
\]
Factor \(\frac{dy}{dx}\) on the left:
\[
\frac{dy}{dx}\left[\frac{9(x^{2}+y)}{y}-17\right]=34x-\frac{16(x^{2}+y)}{x}.
\]
Write both sides with common denominators:
\[
\frac{dy}{dx}\left[\frac{9(x^{2}+y)-17y}{y}\right]=\frac{34x^{2}-16(x^{2}+y)}{x}.
\]
Simplify the numerator on the left:
\[
9(x^{2}+y)-17y=9x^{2}+9y-17y=9x^{2}-8y,
\]
and on the right:
\[
34x^{2}-16(x^{2}+y)=34x^{2}-16x^{2}-16y=18x^{2}-16y.
\]
Thus, we have:
\[
\frac{dy}{dx}\cdot\frac{9x^{2}-8y}{y}=\frac{18x^{2}-16y}{x}.
\]
Solving for \(\frac{dy}{dx}\), we get:
\[
\frac{dy}{dx}=\frac{18x^{2}-16y}{x}\cdot\frac{y}{9x^{2}-8y}.
\]
Notice that the numerator \(18x^{2}-16y\) can be factored as:
\[
18x^{2}-16y=2(9x^{2}-8y).
\]
Substituting this back, we have:
\[
\frac{dy}{dx}=\frac{2(9x^{2}-8y)y}{x(9x^{2}-8y)}=\frac{2y}{x}.
\]
Final Answer:
\[
\frac{dy}{dx}=\frac{2y}{x}.
\]
Question 9:
Find the derivative of
\[
f(x)=x^{x}+a^{x}+x^{a}+a^{a}
\]
for some fixed \( a>0 \) and \( x>0 \).
Solution:
We differentiate \( f(x) \) term by term.
1. For \( x^{x} \):
Write
\[
x^{x}=e^{x\,\text{log}\,x}.
\]
Differentiating using the chain rule:
\[
\frac{d}{dx}\left(e^{x\,\text{log}\,x}\right)=e^{x\,\text{log}\,x}\cdot \frac{d}{dx}\left(x\,\text{log}\,x\right).
\]
Now,
\[
\frac{d}{dx}\left(x\,\text{log}\,x\right)=\text{log}\,x+1.
\]
Therefore,
\[
\frac{d}{dx}\left(x^{x}\right)=x^{x}\left(\text{log}\,x+1\right).
\]
2. For \( a^{x} \):
Since \( a \) is a constant,
\[
\frac{d}{dx}\left(a^{x}\right)=a^{x}\,\text{log}\,a.
\]
3. For \( x^{a} \):
Here \( a \) is constant so the derivative is
\[
\frac{d}{dx}\left(x^{a}\right)=a\,x^{a-1}.
\]
4. For \( a^{a} \):
This is a constant and its derivative is zero.
Combining all these results, the derivative of \( f(x) \) is
\[
f'(x)=x^{x}\left(\text{log}\,x+1\right)+a^{x}\,\text{log}\,a+a\,x^{a-1}.
\]
Final Answer:
\[
f'(x)=x^{x}\left(\text{log}\,x+1\right)+a^{x}\,\text{log}\,a+a\,x^{a-1}.
\]
Question:
10(i) Differentiate \( x^{\text{log } x} + (\text{log } x)^{x} \) with respect to \( x \).
Solution:
We start by differentiating each term separately.
First, consider
\[
x^{\text{log } x} = e^{\text{log } x \cdot \text{log } x} = e^{(\text{log } x)^2}.
\]
Differentiating, we have
\[
\frac{d}{dx}\left(e^{(\text{log } x)^2}\right) = e^{(\text{log } x)^2} \cdot \frac{d}{dx}\left((\text{log } x)^2\right)
= e^{(\text{log } x)^2} \cdot 2\,\text{log } x \cdot \frac{1}{x}.
\]
Therefore,
\[
\frac{d}{dx}\left(x^{\text{log } x}\right) = \frac{2\,\text{log } x}{x}\,x^{\text{log } x}.
\]
Next, consider the second term:
\[
(\text{log } x)^{x} = e^{x\,\text{log}(\text{log } x)}.
\]
Differentiating the exponent, we obtain
\[
\frac{d}{dx}\left(x\,\text{log}(\text{log } x)\right) = \text{log}(\text{log } x) + x \cdot \frac{1}{\text{log } x} \cdot \frac{1}{x} = \text{log}(\text{log } x) + \frac{1}{\text{log } x}.
\]
Hence,
\[
\frac{d}{dx}\left((\text{log } x)^{x}\right) = (\text{log } x)^{x} \left(\text{log}(\text{log } x) + \frac{1}{\text{log } x}\right).
\]
Combining both derivatives, we obtain
\[
\frac{d}{dx}\left(x^{\text{log } x} + (\text{log } x)^{x}\right) = \frac{2\,\text{log } x}{x}\,x^{\text{log } x} + (\text{log } x)^{x} \left(\text{log}(\text{log } x) + \frac{1}{\text{log } x}\right).
\]
Final Answer:
\(\displaystyle \frac{2\,\text{log } x}{x}\,x^{\text{log } x} + (\text{log } x)^{x} \left(\text{log}(\text{log } x) + \frac{1}{\text{log } x}\right) \).
Question:
10(ii) Differentiate \( (\sin x)^{\cos x} + x^{\sin x} \) with respect to \( x \).
Solution:
We differentiate each term separately.
\[
(\sin x)^{\cos x} = e^{\cos x\,\log (\sin x)}.
\]
Differentiating the exponent:
\[
\frac{d}{dx}\left[\cos x\,\log (\sin x)\right] = -\sin x\,\log (\sin x) + \cos x\,\frac{\cos x}{\sin x}
= -\sin x\,\log (\sin x) + \frac{\cos^{2} x}{\sin x}.
\]
Thus, the derivative is:
\[
\frac{d}{dx}\left[(\sin x)^{\cos x}\right] = (\sin x)^{\cos x}\left(-\sin x\,\log (\sin x) + \frac{\cos^{2} x}{\sin x}\right).
\]
Note that \(\frac{\cos^{2} x}{\sin x} = \cos x\,\cot x\).
Next, for the term:
\[
x^{\sin x} = e^{\sin x\,\log x}.
\]
Differentiating the exponent:
\[
\frac{d}{dx}\left[\sin x\,\log x\right] = \cos x\,\log x + \sin x\,\frac{1}{x}.
\]
Therefore, the derivative is:
\[
\frac{d}{dx}\left[x^{\sin x}\right] = x^{\sin x}\left(\cos x\,\log x + \frac{\sin x}{x}\right).
\]
Combining the two results, we obtain:
\[
\frac{d}{dx}\left[(\sin x)^{\cos x} + x^{\sin x}\right] = (\sin x)^{\cos x}\left(\cos x\,\cot x – \sin x\,\log (\sin x)\right) + x^{\sin x}\left(\cos x\,\log x + \frac{\sin x}{x}\right).
\]
Final Answer:
\(\displaystyle (\sin x)^{\cos x}\left(\cos x\,\cot x – \sin x\,\log (\sin x)\right) + x^{\sin x}\left(\cos x\,\log x + \frac{\sin x}{x}\right) \).
Question:
10(iii) Differentiate \( x^{\cos x}+(\cos x)^{x} \) with respect to \( x \).
Solution:
We differentiate each term separately.
For the first term:
\[
x^{\cos x} = e^{\cos x\,\log x}.
\]
Differentiating the exponent:
\[
\frac{d}{dx}\left[\cos x\,\log x\right] = -\sin x\,\log x + \frac{\cos x}{x}.
\]
Hence,
\[
\frac{d}{dx}\left[x^{\cos x}\right] = x^{\cos x}\left(\frac{\cos x}{x} – \sin x\,\log x\right).
\]
For the second term:
\[
(\cos x)^{x} = e^{x\,\log (\cos x)}.
\]
Differentiating the exponent:
\[
\frac{d}{dx}\left[x\,\log (\cos x)\right] = \log (\cos x) + x\left(-\frac{\sin x}{\cos x}\right)
= \log (\cos x) – x\,\tan x.
\]
Thus,
\[
\frac{d}{dx}\left[(\cos x)^{x}\right] = (\cos x)^{x}\left(\log (\cos x) – x\,\tan x\right).
\]
Combining both derivatives, we obtain:
\[
\frac{d}{dx}\left[x^{\cos x}+(\cos x)^{x}\right] = x^{\cos x}\left(\frac{\cos x}{x} – \sin x\,\log x\right) + (\cos x)^{x}\left(\log (\cos x) – x\,\tan x\right).
\]
Final Answer:
\(\displaystyle x^{\cos x}\left(\frac{\cos x}{x} – \sin x\,\log x\right) + (\cos x)^{x}\left(\log (\cos x) – x\,\tan x\right) \).
Question:
10(iv) Differentiate \( x^{\cos x} + (\sin x)^{\tan x} \) with respect to \( x \).
Solution:
We differentiate each term one by one.
For the first term:
\[
x^{\cos x} = e^{\cos x \log x}.
\]
Differentiating the exponent:
\[
\frac{d}{dx}[\cos x \log x] = -\sin x \log x + \frac{\cos x}{x}.
\]
Therefore,
\[
\frac{d}{dx}\left[x^{\cos x}\right] = x^{\cos x}\left(\frac{\cos x}{x} – \sin x \log x\right).
\]
For the second term:
\[
(\sin x)^{\tan x} = e^{\tan x \log (\sin x)}.
\]
Differentiating the exponent:
\[
\frac{d}{dx}[\tan x \log (\sin x)] = \sec^2 x \log (\sin x) + \tan x \cdot \frac{\cos x}{\sin x}
= \sec^2 x \log (\sin x) + \tan x \cot x.
\]
Hence,
\[
\frac{d}{dx}\left[(\sin x)^{\tan x}\right] = (\sin x)^{\tan x} \left( \sec^2 x \log (\sin x) + 1\right).
\]
So, the derivative of the full expression is:
\[
\frac{d}{dx}\left[ x^{\cos x} + (\sin x)^{\tan x} \right] = x^{\cos x} \left( \frac{\cos x}{x} – \sin x \log x \right) + (\sin x)^{\tan x} \left( \sec^2 x \log (\sin x) + 1\right).
\]
Final Answer:
\(\displaystyle x^{\cos x} \left( \frac{\cos x}{x} – \sin x \log x \right) + (\sin x)^{\tan x} \left( \sec^2 x \log (\sin x) + 1\right) \).
Question:
10(v) Differentiate \( (\sin x)^{x} + \sin^{-1}\sqrt{x} \) with respect to \( x \).
Solution:
First, express the term \( (\sin x)^{x} \) in exponential form:
\[
(\sin x)^{x} = e^{x\,\log (\sin x)}.
\]
Differentiating the exponent:
\[
\frac{d}{dx}\Bigl[x\,\log (\sin x)\Bigr] = \log (\sin x) + x\,\frac{1}{\sin x}\cos x = \log (\sin x) + x\,\cot x.
\]
Hence, the derivative of the first term is:
\[
\frac{d}{dx}\left[(\sin x)^{x}\right] = (\sin x)^{x}\left(\log (\sin x) + x\,\cot x\right).
\]
Next, consider the second term:
\[
\sin^{-1}\sqrt{x} = \arcsin(\sqrt{x}).
\]
Let \( u = \sqrt{x} \), so that \( u’ = \frac{1}{2\sqrt{x}} \).
The derivative of \( \arcsin u \) is:
\[
\frac{d}{dx}\left[\arcsin u\right] = \frac{u’}{\sqrt{1-u^{2}}} = \frac{\frac{1}{2\sqrt{x}}}{\sqrt{1-x}} = \frac{1}{2\sqrt{x(1-x)}}.
\]
Combining both parts, the derivative is:
\[
\frac{d}{dx}\left[(\sin x)^{x} + \sin^{-1}\sqrt{x}\right] = (\sin x)^{x}\left(\log (\sin x) + x\,\cot x\right) + \frac{1}{2\sqrt{x(1-x)}}.
\]
Final Answer:
\(\displaystyle (\sin x)^{x}\left(\log (\sin x) + x\,\cot x\right) + \frac{1}{2\sqrt{x(1-x)}} \).
Question:
10(vi) Differentiate \( e^{\sin x} + (\tan x)^{x} \) with respect to \( x \).
Solution:
We write the function as the sum of two terms and differentiate each separately.
\[
\frac{d}{dx}\left(e^{\sin x}\right)=e^{\sin x}\cos x.
\]
For the second term, express it in exponential form:
\[
(\tan x)^{x}=e^{x\,\log (\tan x)}.
\]
Differentiating the exponent, we have:
\[
\frac{d}{dx}\Bigl[x\,\log (\tan x)\Bigr]=\log (\tan x)+x\,\frac{d}{dx}\left[\log (\tan x)\right].
\]
Now, since
\[
\frac{d}{dx}\left[\log (\tan x)\right]=\frac{1}{\tan x}\cdot\sec^{2}x,
\]
it follows that:
\[
\frac{d}{dx}\Bigl[x\,\log (\tan x)\Bigr]=\log (\tan x)+\frac{x\,\sec^{2}x}{\tan x}.
\]
Notice that
\[
\frac{x\,\sec^{2}x}{\tan x}=\frac{x}{\sin x\cos x},
\]
and using the double-angle identity
\[
\sin 2x=2\sin x\cos x,
\]
we can rewrite:
\[
\frac{x}{\sin x\cos x}=\frac{2x}{2\sin x\cos x}=2x\,\mathrm{cosec}\,2x.
\]
Therefore, the derivative of the second term becomes:
\[
\frac{d}{dx}\left[(\tan x)^{x}\right]= (\tan x)^{x}\left(\log (\tan x)+2x\,\mathrm{cosec}\,2x\right).
\]
Combining both derivatives, the overall derivative is:
\[
\frac{d}{dx}\left[e^{\sin x}+(\tan x)^{x}\right]=e^{\sin x}\cos x+ (\tan x)^{x}\left(\log (\tan x)+2x\,\mathrm{cosec}\,2x\right).
\]
Final Answer:
\(\displaystyle e^{\sin x}\cos x+ (\tan x)^{x}\left(\log (\tan x)+2x\,\mathrm{cosec}\,2x\right) \).
Question: 10(vii)
Differentiate \( x^{x} – 2^{\sin x} \) with respect to \( x \).
Solution:
To differentiate \( x^{x} \), we first express it as
\[
x^{x} = e^{x\,\text{log}\,x}.
\]
Differentiating using the chain rule, we have
\[
\frac{d}{dx}\left(e^{x\,\text{log}\,x}\right) = e^{x\,\text{log}\,x} \cdot \frac{d}{dx}(x\,\text{log}\,x).
\]
Now, by the product rule,
\[
\frac{d}{dx}(x\,\text{log}\,x) = 1\cdot\text{log}\,x + x\cdot\frac{1}{x} = \text{log}\,x + 1.
\]
Thus,
\[
\frac{d}{dx}\left(x^{x}\right) = x^{x}\left(1 + \text{log}\,x\right).
\]
Next, for \( 2^{\sin x} \), rewrite it as
\[
2^{\sin x} = e^{\sin x\,\text{log}\,2}.
\]
Differentiating, we obtain
\[
\frac{d}{dx}\left(2^{\sin x}\right) = e^{\sin x\,\text{log}\,2} \cdot \text{log}\,2 \cdot \cos x = 2^{\sin x}\,\text{log}\,2\,\cos x.
\]
Combining the two results and applying the subtraction, the derivative of \( x^{x} – 2^{\sin x} \) is
\[
\frac{d}{dx}\left(x^{x} – 2^{\sin x}\right) = x^{x}\left(1 + \text{log}\,x\right) – 2^{\sin x}\,\text{log}\,2\,\cos x.
\]
Final Answer:
\[
x^{x}\left(1 + \text{log}\,x\right) – 2^{\sin x}\,\text{log}\,2\,\cos x.
\]
Question: 10(viii)
Differentiate \( x^{x\cos x} + \frac{x^{2}+1}{x^{2}-1} \) with respect to \( x \).
Solution:
We first rewrite the function in an exponential form for the term \( x^{x\cos x} \):
\[
x^{x\cos x} = e^{x\cos x\,\text{log}\,x}.
\]
Let
\[
u(x) = x\cos x\,\text{log}\,x.
\]
Differentiating \( u(x) \) using the product rule:
\[
u'(x) = \frac{d}{dx}(x\cos x)\cdot \text{log}\,x + x\cos x\cdot \frac{1}{x}.
\]
Note that
\[
\frac{d}{dx}(x\cos x) = \cos x – x\sin x.
\]
Hence,
\[
u'(x) = (\cos x – x\sin x)\,\text{log}\,x + \cos x.
\]
Therefore, the derivative of \( x^{x\cos x} \) is
\[
\frac{d}{dx}\left(x^{x\cos x}\right) = x^{x\cos x}\left[(\cos x – x\sin x)\,\text{log}\,x + \cos x\right].
\]
Next, for the term
\[
\frac{x^{2}+1}{x^{2}-1},
\]
applying the quotient rule with
\[
u(x) = x^{2}+1,\quad v(x) = x^{2}-1,
\]
we have
\[
u'(x)=2x,\quad v'(x)=2x.
\]
Then,
\[
\frac{d}{dx}\left(\frac{x^{2}+1}{x^{2}-1}\right) = \frac{2x(x^{2}-1)-2x(x^{2}+1)}{(x^{2}-1)^{2}}.
\]
Simplifying the numerator:
\[
2x\left[(x^{2}-1)-(x^{2}+1)\right] = 2x(-2) = -4x,
\]
so that
\[
\frac{d}{dx}\left(\frac{x^{2}+1}{x^{2}-1}\right) = -\frac{4x}{(x^{2}-1)^{2}}.
\]
Combining both derivatives, the overall derivative is:
\[
\frac{d}{dx}\left(x^{x\cos x} + \frac{x^{2}+1}{x^{2}-1}\right) = x^{x\cos x}\left[(\cos x – x\sin x)\,\text{log}\,x + \cos x\right] – \frac{4x}{(x^{2}-1)^{2}}.
\]
For a compact form, we can rewrite the expression in the bracket as:
\[
(\cos x – x\sin x)\,\text{log}\,x + \cos x = (1+\text{log}\,x)\cos x – x\sin x\,\text{log}\,x.
\]
Hence, the derivative becomes:
\[
\frac{d}{dx}\left(x^{x\cos x} + \frac{x^{2}+1}{x^{2}-1}\right) = x^{x\cos x}\left[(1+\text{log}\,x)\cos x – x\sin x\,\text{log}\,x\right] – \frac{4x}{(x^{2}-1)^{2}}.
\]
Final Answer:
\[
x^{x\cos x}\left[(1+\text{log}\,x)\cos x – x\sin x\,\text{log}\,x\right] – \frac{4x}{(x^{2}-1)^{2}}.
\]
Question 11:
If \( y=(\log x)^{\cos x}+\frac{x^{2}+1}{x^{2}-1} \), find \(\frac{dy}{dx}\).
Solution:
First, express the first term in exponential form:
\[
(\log x)^{\cos x} = e^{\cos x\,\text{log}(\log x)}.
\]
Let
\[
u(x)=\cos x\,\text{log}(\log x).
\]
Differentiating \( u(x) \) using the product rule:
\[
u'(x)=\frac{d}{dx}(\cos x)\cdot\text{log}(\log x)+\cos x\cdot\frac{d}{dx}\left[\text{log}(\log x)\right].
\]
We have
\[
\frac{d}{dx}(\cos x)=-\sin x,
\]
and for the second factor,
\[
\frac{d}{dx}\left[\text{log}(\log x)\right] = \frac{1}{\log x}\cdot\frac{1}{x}=\frac{1}{x\,\log x}.
\]
Thus,
\[
u'(x)=-\sin x\,\text{log}(\log x)+\frac{\cos x}{x\,\text{log} x}.
\]
Consequently, the derivative of the first term is:
\[
\frac{d}{dx}\left[(\log x)^{\cos x}\right] = (\log x)^{\cos x}\left[-\sin x\,\text{log}(\log x)+\frac{\cos x}{x\,\text{log} x}\right].
\]
Next, differentiate the second term \(\frac{x^{2}+1}{x^{2}-1}\) using the quotient rule.
Let
\[
u(x)=x^{2}+1,\quad v(x)=x^{2}-1.
\]
Then,
\[
u'(x)=2x,\quad v'(x)=2x.
\]
By the quotient rule,
\[
\frac{d}{dx}\left(\frac{x^{2}+1}{x^{2}-1}\right)=\frac{2x(x^{2}-1)-2x(x^{2}+1)}{(x^{2}-1)^{2}}.
\]
Simplify the numerator:
\[
2x\left[(x^{2}-1)-(x^{2}+1)\right]=2x(-2)=-4x,
\]
so that
\[
\frac{d}{dx}\left(\frac{x^{2}+1}{x^{2}-1}\right)=-\frac{4x}{(x^{2}-1)^{2}}.
\]
Combining both results, we obtain:
\[
\frac{dy}{dx}=(\log x)^{\cos x}\left[-\sin x\,\text{log}(\log x)+\frac{\cos x}{x\,\text{log} x}\right]-\frac{4x}{(x^{2}-1)^{2}}.
\]
Final Answer:
\[
\frac{dy}{dx}=(\log x)^{\cos x}\left[-\sin x\,\text{log}(\log x)+\frac{\cos x}{x\,\text{log} x}\right]-\frac{4x}{(x^{2}-1)^{2}}.
\]
Question 12(i):
Find \(\frac{dy}{dx}\) when \(x^{y}y^{x}=a^{b}\).
Solution:
First, take the natural logarithm of both sides:
\[
\ln\left(x^{y}y^{x}\right)=\ln\left(a^{b}\right).
\]
Using logarithm properties, we get:
\[
y\,\text{log}\,x + x\,\text{log}\,y = b\,\text{log}\,a.
\]
Since \(b\,\text{log}\,a\) is constant, differentiating both sides with respect to \(x\) yields:
\[
\frac{d}{dx}\left(y\,\text{log}\,x + x\,\text{log}\,y\right)=0.
\]
Differentiating term by term:
\[
\frac{d}{dx}\left(y\,\text{log}\,x\right)= y’\,\text{log}\,x + \frac{y}{x},
\]
and
\[
\frac{d}{dx}\left(x\,\text{log}\,y\right)= \text{log}\,y + x\cdot\frac{y’}{y}.
\]
Therefore, we have:
\[
y’\,\text{log}\,x + \frac{y}{x} + \text{log}\,y + \frac{x\,y’}{y}=0.
\]
Collecting the terms involving \(y’\):
\[
y’\left(\text{log}\,x+\frac{x}{y}\right)=-\left(\frac{y}{x}+\text{log}\,y\right).
\]
Hence, the derivative is:
\[
\frac{dy}{dx}=-\frac{\frac{y}{x}+\text{log}\,y}{\text{log}\,x+\frac{x}{y}}.
\]
Multiplying numerator and denominator by \(xy\) to simplify, we obtain:
\[
\frac{dy}{dx}=-\frac{y\,(y+x\,\text{log}\,y)}{x\,(x+y\,\text{log}\,x)}.
\]
Final Answer:
\[
\frac{dy}{dx}=-\frac{y\,(y+x\,\text{log}\,y)}{x\,(x+y\,\text{log}\,x)}.
\]
Question 12(ii):
Find \(\frac{dy}{dx}\) when
\[
x^{y}+y^{x}=\text{log}\,a^{b}.
\]
Solution:
Since \(\text{log}\,a^{b}\) is a constant, differentiate both sides with respect to \(x\):
\[
\frac{d}{dx}\left(x^{y}+y^{x}\right)=0.
\]
Write \(x^{y}\) and \(y^{x}\) in exponential form:
\[
x^{y}=e^{y\,\text{log}\,x},\quad y^{x}=e^{x\,\text{log}\,y}.
\]
Differentiate \(x^{y}\):
\[
\frac{d}{dx}\left(x^{y}\right)=x^{y}\left(y’\,\text{log}\,x+\frac{y}{x}\right).
\]
Differentiate \(y^{x}\):
\[
\frac{d}{dx}\left(y^{x}\right)=y^{x}\left(\text{log}\,y+\frac{x\,y’}{y}\right).
\]
Therefore, we have:
\[
x^{y}\left(y’\,\text{log}\,x+\frac{y}{x}\right)+y^{x}\left(\text{log}\,y+\frac{x\,y’}{y}\right)=0.
\]
Collect the terms containing \(y’\):
\[
y’\left(x^{y}\,\text{log}\,x+\frac{x\,y^{x}}{y}\right)=-\left(\frac{y\,x^{y}}{x}+y^{x}\,\text{log}\,y\right).
\]
Notice that \(\frac{y\,x^{y}}{x}=y\,x^{y-1}\) and \(\frac{x\,y^{x}}{y}=x\,y^{x-1}\). Thus,
\[
y’\left(x^{y}\,\text{log}\,x+x\,y^{x-1}\right)=-\left(y\,x^{y-1}+y^{x}\,\text{log}\,y\right).
\]
Dividing both sides by \(x^{y}\,\text{log}\,x+x\,y^{x-1}\), we get:
\[
y’=-\frac{y\,x^{y-1}+y^{x}\,\text{log}\,y}{x^{y}\,\text{log}\,x+x\,y^{x-1}}.
\]
To express the answer in a compact form, factor \(y\) in the numerator and \(x\) in the denominator:
\[
y’=-\frac{y\left(x^{y-1}+y^{x-1}\,\text{log}\,y\right)}{x\left(x^{y-1}\,\text{log}\,x+y^{x-1}\right)}.
\]
Final Answer:
\[
\frac{dy}{dx}=-\frac{y\left(x^{y-1}+y^{x-1}\,\text{log}\,y\right)}{x\left(x^{y-1}\,\text{log}\,x+y^{x-1}\right)}.
\]
Question 12(iii):
Find \(\frac{dy}{dx}\) when
\[
x^x + y^x = 1.
\]
Solution:
Differentiate both sides with respect to \(x\):
\[
\frac{d}{dx}(x^x + y^x) = \frac{d}{dx}(1)
\]
First, differentiate \(x^x\):
\[
\frac{d}{dx}(x^x) = x^x(1 + \log x)
\]
Now differentiate \(y^x\). Since \(y\) is a function of \(x\), use the chain rule:
\[
\frac{d}{dx}(y^x) = \frac{d}{dx}(e^{x \log y}) = e^{x \log y} \left( \log y + x \cdot \frac{1}{y} \cdot \frac{dy}{dx} \right)
\]
\[
\Rightarrow \frac{d}{dx}(y^x) = y^x \left( \log y + \frac{x}{y} \cdot \frac{dy}{dx} \right)
\]
Substitute into the main equation:
\[
x^x(1 + \log x) + y^x \left( \log y + \frac{x}{y} \cdot \frac{dy}{dx} \right) = 0
\]
Rearranging:
\[
y^x \cdot \frac{x}{y} \cdot \frac{dy}{dx} = -x^x(1 + \log x) – y^x \log y
\]
Solve for \(\frac{dy}{dx}\):
\[
\frac{dy}{dx} = -\frac{y \left[x^x(1 + \log x) + y^x \log y\right]}{x y^x}
\]
Now simplify using \( \frac{y}{y^x} = y^{1 – x} \), and write it with \( y^{x-1} \) in denominator:
\[
\frac{dy}{dx} = -\frac{x^x(1 + \log x) + y^x \log y}{x y^{x – 1}}
\]
Final Answer:
\[
\frac{dy}{dx} = -\frac{x^x(1 + \log x) + y^x \log y}{x y^{x – 1}}
\]
Question 12(iv):
Find \(\frac{dy}{dx}\) when
\[
(\sin x)^y = x + y.
\]
Solution:
Take logarithm on both sides:
\[
\log\left((\sin x)^y\right) = \log(x + y).
\]
Using log laws:
\[
y \cdot \log(\sin x) = \log(x + y).
\]
Now differentiate both sides with respect to \(x\). Use product rule on the left and chain rule on the right:
**LHS:**
\[
\frac{d}{dx} \left[ y \cdot \log(\sin x) \right] = y \cdot \frac{\cos x}{\sin x} + \log(\sin x) \cdot \frac{dy}{dx} = y \cdot \cot x + \log(\sin x) \cdot \frac{dy}{dx}.
\]
**RHS:**
\[
\frac{d}{dx} \left[\log(x + y)\right] = \frac{1}{x + y} \cdot \left(1 + \frac{dy}{dx}\right).
\]
Equating both derivatives:
\[
y \cot x + \log(\sin x) \cdot \frac{dy}{dx} = \frac{1 + \frac{dy}{dx}}{x + y}.
\]
Multiply both sides by \(x + y\):
\[
(x + y) y \cot x + (x + y) \log(\sin x) \cdot \frac{dy}{dx} = 1 + \frac{dy}{dx}.
\]
Bring all terms to one side:
\[
(x + y) \log(\sin x) \cdot \frac{dy}{dx} – \frac{dy}{dx} = 1 – (x + y) y \cot x.
\]
Factor \(\frac{dy}{dx}\) on the left:
\[
\frac{dy}{dx} \left[(x + y) \log(\sin x) – 1 \right] = 1 – (x + y) y \cot x.
\]
Therefore:
\[
\frac{dy}{dx} = \frac{1 – (x + y) y \cot x}{(x + y) \log(\sin x) – 1}.
\]
Final Answer:
\[
\frac{dy}{dx} = \frac{1 – (x + y) y \cot x}{(x + y) \log(\sin x) – 1}.
\]
Question 12(v):
Find \(\frac{dy}{dx}\) when
\[
xy = e^{x-y}.
\]
Solution:
Differentiate both sides with respect to \(x\). For the left-hand side, using the product rule:
\[
\frac{d}{dx}(xy)= y+x\,\frac{dy}{dx}.
\]
For the right-hand side, differentiate using the chain rule:
\[
\frac{d}{dx}\left(e^{x-y}\right)= e^{x-y}\cdot\frac{d}{dx}(x-y)= e^{x-y}\left(1-\frac{dy}{dx}\right).
\]
Equate the derivatives:
\[
y+x\,\frac{dy}{dx}= e^{x-y}\left(1-\frac{dy}{dx}\right).
\]
Rearranging, bring the \( \frac{dy}{dx} \) terms together:
\[
x\,\frac{dy}{dx}+e^{x-y}\frac{dy}{dx}= e^{x-y}-y.
\]
Factor out \(\frac{dy}{dx}\):
\[
\frac{dy}{dx}\left(x+e^{x-y}\right)= e^{x-y}-y.
\]
Therefore,
\[
\frac{dy}{dx}=\frac{e^{x-y}-y}{x+e^{x-y}}.
\]
Now, note from the original equation \(xy = e^{x-y}\), we have:
\[
e^{x-y}=xy.
\]
Substituting this into our expression:
\[
\frac{dy}{dx}=\frac{xy-y}{x+xy}=\frac{y(x-1)}{x(1+y)}.
\]
Final Answer:
\[
\frac{dy}{dx}=\frac{y(x-1)}{x(y+1)}.
\]
Question 12(vi):
Find \(\frac{dy}{dx}\) when
\[
(\cos x)^{y} = (\cos y)^{x}.
\]
Solution:
First, take the natural logarithm of both sides:
\[
\text{log}((\cos x)^{y}) = \text{log}((\cos y)^{x}).
\]
Using logarithmic properties, we have:
\[
y\,\text{log}(\cos x) = x\,\text{log}(\cos y).
\]
Differentiate both sides with respect to \(x\). For the left-hand side, applying the product rule:
\[
\frac{d}{dx}\left[y\,\text{log}(\cos x)\right] = y’\,\text{log}(\cos x) + y\cdot\frac{d}{dx}\left[\text{log}(\cos x)\right].
\]
Since
\[
\frac{d}{dx}\left[\text{log}(\cos x)\right] = -\tan x,
\]
it follows that:
\[
\frac{d}{dx}\left[y\,\text{log}(\cos x)\right] = y’\,\text{log}(\cos x) – y\,\tan x.
\]
Similarly, for the right-hand side:
\[
\frac{d}{dx}\left[x\,\text{log}(\cos y)\right] = \text{log}(\cos y) + x\cdot\frac{d}{dx}\left[\text{log}(\cos y)\right].
\]
Here,
\[
\frac{d}{dx}\left[\text{log}(\cos y)\right] = -\tan y\,y’,
\]
so that:
\[
\frac{d}{dx}\left[x\,\text{log}(\cos y)\right] = \text{log}(\cos y) – x\,\tan y\,y’.
\]
Equating the derivatives:
\[
y’\,\text{log}(\cos x) – y\,\tan x = \text{log}(\cos y) – x\,\tan y\,y’.
\]
Collecting the \(y’\) terms:
\[
y’\,\text{log}(\cos x) + x\,\tan y\,y’ = \text{log}(\cos y) + y\,\tan x.
\]
Factor out \(y’\):
\[
y’\left[\text{log}(\cos x) + x\,\tan y\right] = \text{log}(\cos y) + y\,\tan x.
\]
Finally, solving for \(y’\) yields:
\[
\frac{dy}{dx} = \frac{y\,\tan x + \text{log}(\cos y)}{x\,\tan y + \text{log}(\cos x)}.
\]
Final Answer:
\[
\frac{dy}{dx} = \frac{y\,\tan x + \text{log}(\cos y)}{x\,\tan y + \text{log}(\cos x)}.
\]