Here is the complete ML Aggarwal Class 12 Solutions of Exercise – 5.10 for Chapter 5 – Continuity and Differentiability. Each question is solved step by step for better understanding.
Let \[ y = e^{\sin^{-1} x}. \]
To differentiate \( y \) with respect to \( x \), we apply the chain rule. The outer function is \( e^u \) with \( u = \sin^{-1} x \), and its derivative is \( e^u \). The inner function is \( u = \sin^{-1} x \), whose derivative is \[ \frac{d}{dx} (\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}}. \]
Thus, by the chain rule, the derivative is: \[ \frac{dy}{dx} = e^{\sin^{-1} x} \cdot \frac{1}{\sqrt{1-x^2}}. \]
We start with \[ y = \cos\left(\log x + e^x\right). \] Let \[ u = \log x + e^x. \] Then, \( y = \cos u \). Applying the chain rule, we have \[ \frac{dy}{dx} = -\sin u \cdot \frac{du}{dx}. \]
Next, differentiate \( u \) with respect to \( x \): \[ \frac{du}{dx} = \frac{d}{dx} (\log x) + \frac{d}{dx} (e^x) = \frac{1}{x} + e^x. \]
Substituting back into the derivative of \( y \): \[ \frac{dy}{dx} = -\sin\left(\log x + e^x\right) \left(\frac{1}{x} + e^x\right). \]
This can be rewritten as: \[ \frac{dy}{dx} = -\frac{1 + x e^x}{x} \sin\left(\log x + e^x\right). \]
We start by rewriting the expression using the logarithm property: \[ y = \log\left(x+\sqrt{x^2-a^2}\right) – \log\left(x-\sqrt{x^2-a^2}\right). \]
Differentiate the first term: \[ \frac{d}{dx}\left[\log\left(x+\sqrt{x^2-a^2}\right)\right] = \frac{1}{x+\sqrt{x^2-a^2}} \cdot \left(1+\frac{x}{\sqrt{x^2-a^2}}\right). \] Notice that \[ 1+\frac{x}{\sqrt{x^2-a^2}} = \frac{\sqrt{x^2-a^2}+x}{\sqrt{x^2-a^2}}. \] Thus, the derivative becomes \[ \frac{\sqrt{x^2-a^2}+x}{\left(x+\sqrt{x^2-a^2}\right)\sqrt{x^2-a^2}} = \frac{1}{\sqrt{x^2-a^2}}. \]
Similarly, differentiate the second term: \[ \frac{d}{dx}\left[\log\left(x-\sqrt{x^2-a^2}\right)\right] = \frac{1}{x-\sqrt{x^2-a^2}} \cdot \left(1-\frac{x}{\sqrt{x^2-a^2}}\right). \] Since \[ 1-\frac{x}{\sqrt{x^2-a^2}} = \frac{\sqrt{x^2-a^2}-x}{\sqrt{x^2-a^2}}, \] the derivative becomes \[ \frac{\sqrt{x^2-a^2}-x}{\left(x-\sqrt{x^2-a^2}\right)\sqrt{x^2-a^2}} = -\frac{1}{\sqrt{x^2-a^2}}. \]
Now, subtract the second derivative from the first: \[ \frac{dy}{dx} = \frac{1}{\sqrt{x^2-a^2}} – \left(-\frac{1}{\sqrt{x^2-a^2}}\right) = \frac{1}{\sqrt{x^2-a^2}} + \frac{1}{\sqrt{x^2-a^2}} = \frac{2}{\sqrt{x^2-a^2}}. \]
First, rewrite the given function as: \[ y = \log\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right) = \frac{1}{2}\log\left(\frac{1-\cos x}{1+\cos x}\right). \]
Notice that the expression inside the logarithm can be simplified using the trigonometric identity: \[ \frac{1-\cos x}{1+\cos x} = \tan^2\frac{x}{2}. \] Thus, we have: \[ y = \frac{1}{2}\log\left(\tan^2\frac{x}{2}\right) = \log\left(\tan\frac{x}{2}\right). \]
Now, differentiate: \[ y = \log\left(\tan\frac{x}{2}\right). \] Using the chain rule, \[ \frac{dy}{dx} = \frac{1}{\tan\frac{x}{2}} \cdot \frac{d}{dx}\left(\tan\frac{x}{2}\right). \]
Differentiate \(\tan\frac{x}{2}\) with respect to \(x\): \[ \frac{d}{dx}\left(\tan\frac{x}{2}\right) = \sec^2\frac{x}{2} \cdot \frac{1}{2}. \] Therefore, \[ \frac{dy}{dx} = \frac{1}{\tan\frac{x}{2}} \cdot \frac{1}{2}\sec^2\frac{x}{2}. \]
Simplify the expression: \[ \frac{\sec^2\frac{x}{2}}{\tan\frac{x}{2}} = \frac{1}{\cos^2\frac{x}{2}} \cdot \frac{\cos\frac{x}{2}}{\sin\frac{x}{2}} = \frac{1}{\cos\frac{x}{2}\sin\frac{x}{2}} = \frac{2}{\sin x}, \] since \(\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2}\).
Finally, the derivative is: \[ \frac{dy}{dx} = \frac{1}{2}\cdot\frac{2}{\sin x} = \frac{1}{\sin x} = \mathrm{cosec}\, x. \]
Let \[ y = e^{\cot^{-1}(x^2)}. \] Using the chain rule, we have: \[ \frac{dy}{dx} = e^{\cot^{-1}(x^2)} \cdot \frac{d}{dx}\left[\cot^{-1}(x^2)\right]. \]
Recall that the derivative of \( \cot^{-1} u \) with respect to \( u \) is: \[ \frac{d}{du}\cot^{-1}u = -\frac{1}{1+u^2}. \] Here, \( u = x^2 \) so that: \[ \frac{du}{dx} = 2x. \] Hence, by the chain rule: \[ \frac{d}{dx}\left[\cot^{-1}(x^2)\right] = -\frac{1}{1+(x^2)^2}\cdot 2x = -\frac{2x}{1+x^4}. \]
Substitute this result into the derivative for \( y \): \[ \frac{dy}{dx} = e^{\cot^{-1}(x^2)} \cdot \left(-\frac{2x}{1+x^4}\right) = -\frac{2x}{1+x^4}\, e^{\cot^{-1}(x^2)}. \]
We are given \[ y = x\sqrt{1+x^2} + \log\left(x+\sqrt{x^2+1}\right). \] We differentiate each term separately.
First term: \( f(x)=x\sqrt{1+x^2} \).
Using the product rule:
\[
f'(x)=\sqrt{1+x^2}+x\cdot\frac{d}{dx}\left(\sqrt{1+x^2}\right).
\]
Since
\[
\frac{d}{dx}\left(\sqrt{1+x^2}\right)=\frac{1}{2\sqrt{1+x^2}}\cdot 2x=\frac{x}{\sqrt{1+x^2}},
\]
we have:
\[
f'(x)=\sqrt{1+x^2}+x\cdot\frac{x}{\sqrt{1+x^2}}
=\sqrt{1+x^2}+\frac{x^2}{\sqrt{1+x^2}}
=\frac{1+x^2+x^2}{\sqrt{1+x^2}}
=\frac{1+2x^2}{\sqrt{1+x^2}}.
\]
Second term: \( g(x)=\log\left(x+\sqrt{x^2+1}\right) \).
Differentiating using the chain rule:
\[
g'(x)=\frac{1}{x+\sqrt{x^2+1}}\cdot\left(1+\frac{x}{\sqrt{x^2+1}}\right).
\]
Notice that:
\[
1+\frac{x}{\sqrt{x^2+1}}=\frac{\sqrt{x^2+1}+x}{\sqrt{x^2+1}},
\]
hence:
\[
g'(x)=\frac{\sqrt{x^2+1}+x}{\left(x+\sqrt{x^2+1}\right)\sqrt{x^2+1}}.
\]
Since the numerator and the factor \( x+\sqrt{x^2+1} \) in the denominator are identical, this simplifies to:
\[
g'(x)=\frac{1}{\sqrt{x^2+1}}.
\]
Adding the derivatives of the two terms: \[ \frac{dy}{dx}=f'(x)+g'(x) = \frac{1+2x^2}{\sqrt{1+x^2}}+\frac{1}{\sqrt{x^2+1}}. \] Noting that \(\sqrt{1+x^2}=\sqrt{x^2+1}\), we combine: \[ \frac{dy}{dx}=\frac{1+2x^2+1}{\sqrt{1+x^2}} = \frac{2(1+x^2)}{\sqrt{1+x^2}} = 2\sqrt{1+x^2}. \]
Let \[ y=\frac{u}{v},\quad \text{with } u=\log\left(x+\sqrt{x^2+1}\right) \quad \text{and} \quad v=\sqrt{x^2+1}. \]
Step 1: Differentiate \( u \).
We have:
\[
u=\log\left(x+\sqrt{x^2+1}\right).
\]
Differentiating with respect to \( x \):
\[
u’=\frac{1}{x+\sqrt{x^2+1}}\left(1+\frac{x}{\sqrt{x^2+1}}\right).
\]
Notice that
\[
1+\frac{x}{\sqrt{x^2+1}}=\frac{\sqrt{x^2+1}+x}{\sqrt{x^2+1}},
\]
and since \( x+\sqrt{x^2+1}=\sqrt{x^2+1}+x \), it follows that:
\[
u’=\frac{1}{\sqrt{x^2+1}}.
\]
Step 2: Differentiate \( v \).
Here,
\[
v=\sqrt{x^2+1},
\]
so
\[
v’=\frac{1}{2\sqrt{x^2+1}}(2x)=\frac{x}{\sqrt{x^2+1}}.
\]
Step 3: Apply the Quotient Rule.
The quotient rule states:
\[
y’=\frac{u’v-uv’}{v^2}.
\]
Substituting the computed derivatives:
\[
y’=\frac{\displaystyle \frac{1}{\sqrt{x^2+1}}\cdot\sqrt{x^2+1}-\log\left(x+\sqrt{x^2+1}\right)\cdot\frac{x}{\sqrt{x^2+1}}}{x^2+1}.
\]
Simplify the numerator:
\[
\frac{1}{\sqrt{x^2+1}}\cdot\sqrt{x^2+1}=1,
\]
hence:
\[
y’=\frac{1-\frac{x\log\left(x+\sqrt{x^2+1}\right)}{\sqrt{x^2+1}}}{x^2+1}.
\]
Step 4: Form the Expression \(\left(x^2+1\right)y’+xy\).
Multiply \( y’ \) by \( (x^2+1) \):
\[
\left(x^2+1\right)y’ = 1-\frac{x\log\left(x+\sqrt{x^2+1}\right)}{\sqrt{x^2+1}}.
\]
Also,
\[
y=\frac{\log\left(x+\sqrt{x^2+1}\right)}{\sqrt{x^2+1}},
\]
so
\[
xy=\frac{x\log\left(x+\sqrt{x^2+1}\right)}{\sqrt{x^2+1}}.
\]
Adding these results:
\[
\left(x^2+1\right)y’+xy = \left[1-\frac{x\log\left(x+\sqrt{x^2+1}\right)}{\sqrt{x^2+1}}\right]+\frac{x\log\left(x+\sqrt{x^2+1}\right)}{\sqrt{x^2+1}} = 1.
\]
Thus, we have proved that: \[ \left(x^2+1\right)\frac{dy}{dx}+xy=1. \]
We start with \[ y = e^{2\log x + 3x}. \] Notice that using the property \(e^{2\log x}=x^2\), we can rewrite: \[ y = x^2 e^{3x}. \]
Now, differentiate \(y=x^2e^{3x}\) using the product rule: \[ \frac{dy}{dx} = \frac{d}{dx}\left(x^2\right) e^{3x} + x^2 \frac{d}{dx}\left(e^{3x}\right). \]
Compute the derivatives: \[ \frac{d}{dx}\left(x^2\right)=2x, \quad \frac{d}{dx}\left(e^{3x}\right)=3e^{3x}. \]
Substitute these into the product rule: \[ \frac{dy}{dx} = 2x\, e^{3x} + x^2\cdot 3e^{3x} = e^{3x}\left(2x + 3x^2\right). \]
Factor out \(x\) from the expression inside the parentheses: \[ \frac{dy}{dx} = x\left(2+3x\right)e^{3x}. \]
Thus, we have proved that: \[ \frac{dy}{dx} = x(2+3x)e^{3x}. \]
Let \[ u=\frac{2^{x+1}}{1-4^x}. \] Then, \[ y=\tan^{-1}(u) \] and by the chain rule, \[ \frac{dy}{dx}=\frac{u’}{1+u^2}. \]
Step 1: Simplify \( u \).
Note that
\[
2^{x+1}=2\cdot2^x \quad \text{and} \quad 4^x=(2^2)^x=2^{2x}.
\]
Thus,
\[
u=\frac{2\cdot2^x}{1-2^{2x}}.
\]
Step 2: Differentiate \( u \) using the quotient rule.
Let
\[
N(x)=2\cdot2^x \quad \text{and} \quad D(x)=1-2^{2x}.
\]
Then,
\[
N'(x)=2\cdot2^x\log2,
\]
and
\[
D'(x)=-\frac{d}{dx}(2^{2x})=-2^{2x}\cdot(2\log2)=-2^{2x+1}\log2.
\]
By the quotient rule:
\[
u’=\frac{N'(x)D(x)-N(x)D'(x)}{[D(x)]^2}.
\]
Substituting the expressions:
\[
u’=\frac{2\cdot2^x\log2\,(1-2^{2x})-2\cdot2^x\left(-2^{2x+1}\log2\right)}{(1-2^{2x})^2}.
\]
Simplify the numerator: \[ 2\cdot2^x\log2\,(1-2^{2x})+2\cdot2^x\cdot2^{2x+1}\log2 =2\cdot2^x\log2\left[(1-2^{2x})+2^{2x+1}\right]. \] Notice that: \[ 2^{2x+1}=2\cdot2^{2x}, \] so: \[ (1-2^{2x})+2\cdot2^{2x}=1+2^{2x}. \] Thus, \[ u’=\frac{2\cdot2^x\log2\,(1+2^{2x})}{(1-2^{2x})^2}. \]
Step 3: Compute \( 1+u^2 \).
We have:
\[
u=\frac{2\cdot2^x}{1-2^{2x}},
\]
so
\[
u^2=\frac{4\cdot2^{2x}}{(1-2^{2x})^2}.
\]
Therefore,
\[
1+u^2=\frac{(1-2^{2x})^2+4\cdot2^{2x}}{(1-2^{2x})^2}.
\]
Expand and simplify the numerator:
\[
(1-2^{2x})^2+4\cdot2^{2x}=1-2\cdot2^{2x}+2^{4x}+4\cdot2^{2x}
=1+2^{4x}+2\cdot2^{2x}.
\]
Recognize that:
\[
1+2\cdot2^{2x}+2^{4x}=\left(1+2^{2x}\right)^2.
\]
Hence,
\[
1+u^2=\frac{\left(1+2^{2x}\right)^2}{(1-2^{2x})^2}.
\]
Step 4: Write the derivative \( \frac{dy}{dx} \).
Substitute \( u’ \) and \( 1+u^2 \) into the chain rule expression:
\[
\frac{dy}{dx}=\frac{u’}{1+u^2}
=\frac{\displaystyle \frac{2\cdot2^x\log2\,(1+2^{2x})}{(1-2^{2x})^2}}{\displaystyle \frac{\left(1+2^{2x}\right)^2}{(1-2^{2x})^2}}
=\frac{2\cdot2^x\log2\,(1+2^{2x})}{\left(1+2^{2x}\right)^2}.
\]
Cancel the common factor \(1+2^{2x}\):
\[
\frac{dy}{dx}=\frac{2\cdot2^x\log2}{1+2^{2x}}.
\]
Writing \(2\cdot2^x\) as \(2^{x+1}\), we have:
\[
\frac{dy}{dx}=\frac{2^{x+1}\log2}{1+2^{2x}}.
\]
We differentiate the equation \[ xy + xe^{-y} + ye^{x} = x^2 \] implicitly with respect to \(x\).
Step 1: Differentiate each term.
Term 1: \(xy\)
\[
\frac{d}{dx}(xy) = y + x\,y’.
\]
Term 2: \(xe^{-y}\) (using the product rule)
\[
\frac{d}{dx}\bigl(xe^{-y}\bigr) = \frac{d}{dx}(x)\cdot e^{-y} + x\cdot\frac{d}{dx}\bigl(e^{-y}\bigr)
= e^{-y} + x\Bigl(-e^{-y}y’\Bigr)
= e^{-y} – x\,e^{-y}\,y’.
\]
Term 3: \(ye^{x}\) (again using the product rule)
\[
\frac{d}{dx}\bigl(ye^{x}\bigr) = y’\,e^{x} + y\,e^{x}.
\]
Right-hand side: \(x^2\)
\[
\frac{d}{dx}\left(x^2\right) = 2x.
\]
Step 2: Combine the differentiated terms.
The derivative of the left-hand side becomes:
\[
\left(y + xy’\right) + \left(e^{-y} – xe^{-y}\,y’\right) + \left(e^{x}y’ + ye^{x}\right) = 2x.
\]
Step 3: Group the terms containing \(y’\).
Collect the terms with \(y’\):
\[
xy’ – xe^{-y}\,y’ + e^{x}y’ + \left(y + e^{-y} + ye^{x}\right) = 2x.
\]
Factor out \(y’\):
\[
y’\Bigl(x – xe^{-y} + e^{x}\Bigr) + \Bigl(y + e^{-y} + ye^{x}\Bigr) = 2x.
\]
Step 4: Solve for \(y’\).
Isolate the \(y’\) term:
\[
y’\Bigl(x – xe^{-y} + e^{x}\Bigr) = 2x – \Bigl(y + e^{-y} + ye^{x}\Bigr).
\]
Thus,
\[
y’ = \frac{2x – \left(y + e^{-y} + ye^{x}\right)}{x – xe^{-y} + e^{x}}.
\]
We can also rewrite the denominator as: \[ x – xe^{-y} + e^{x} = x + e^{x} – xe^{-y}, \] which matches the provided answer.
We start with the equation \[ e^{x-y} = \log\left(\frac{x}{y}\right). \] We will differentiate both sides with respect to \(x\) using implicit differentiation.
Step 1: Differentiate the left-hand side.
The left-hand side is
\[
e^{x-y}.
\]
Differentiating, we use the chain rule:
\[
\frac{d}{dx}\left(e^{x-y}\right) = e^{x-y}\cdot\frac{d}{dx}(x-y)
= e^{x-y}\left(1 – \frac{dy}{dx}\right).
\]
Step 2: Differentiate the right-hand side.
The right-hand side is
\[
\log\left(\frac{x}{y}\right).
\]
Using the property of logarithms, we write:
\[
\log\left(\frac{x}{y}\right) = \log x – \log y.
\]
Differentiating term by term:
\[
\frac{d}{dx}(\log x) = \frac{1}{x},\quad \frac{d}{dx}(\log y) = \frac{1}{y}\frac{dy}{dx}.
\]
Hence, the derivative is:
\[
\frac{d}{dx}\left(\log\left(\frac{x}{y}\right)\right) = \frac{1}{x} – \frac{1}{y}\frac{dy}{dx}.
\]
Step 3: Equate the derivatives.
Equating the derivatives from both sides, we have:
\[
e^{x-y}\left(1 – \frac{dy}{dx}\right) = \frac{1}{x} – \frac{1}{y}\frac{dy}{dx}.
\]
Step 4: Solve for \(\frac{dy}{dx}\).
Expand the left-hand side:
\[
e^{x-y} – e^{x-y}\frac{dy}{dx} = \frac{1}{x} – \frac{1}{y}\frac{dy}{dx}.
\]
Bring the terms involving \(\frac{dy}{dx}\) to one side:
\[
e^{x-y} – \frac{1}{x} = e^{x-y}\frac{dy}{dx} – \frac{1}{y}\frac{dy}{dx}.
\]
Factor out \(\frac{dy}{dx}\) on the right:
\[
e^{x-y} – \frac{1}{x} = \frac{dy}{dx}\left(e^{x-y} – \frac{1}{y}\right).
\]
Therefore, solving for \(\frac{dy}{dx}\) yields:
\[
\frac{dy}{dx} = \frac{e^{x-y} – \frac{1}{x}}{e^{x-y} – \frac{1}{y}}.
\]
We start with the given equation: \[ y \log x = x – y. \]
Step 1: Bring the terms involving \( y \) together: \[ y \log x + y = x. \] Factor out \( y \): \[ y (1+\log x) = x. \]
Step 2: Solve for \( y \): \[ y = \frac{x}{1+\log x}. \]
Step 3: Differentiate \( y \) with respect to \( x \) using the quotient rule. Recall the quotient rule: \[ \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} – u \frac{dv}{dx}}{v^2}, \] where \( u = x \) and \( v = 1+\log x \).
Compute the derivatives: \[ \frac{du}{dx} = 1 \quad \text{and} \quad \frac{dv}{dx} = \frac{1}{x}. \]
Applying the quotient rule: \[ \frac{dy}{dx} = \frac{(1+\log x)(1) – x\left(\frac{1}{x}\right)}{(1+\log x)^2}. \]
Simplify the numerator: \[ (1+\log x) – 1 = \log x. \]
Thus, the derivative is: \[ \frac{dy}{dx} = \frac{\log x}{(1+\log x)^2}. \]
First, express the logarithm with base \( x \) in terms of natural logarithms: \[ \log_{x}(2x-3)=\frac{\log(2x-3)}{\log x}. \]
Let \[ u=\log(2x-3) \quad \text{and} \quad v=\log x. \] Then \[ y=\frac{u}{v}. \]
Compute the derivatives \( u’ \) and \( v’ \):
Differentiating \( u \): \[ u’=\frac{d}{dx}[\log(2x-3)]=\frac{1}{2x-3}\cdot2=\frac{2}{2x-3}. \]
Differentiating \( v \): \[ v’=\frac{d}{dx}[\log x]=\frac{1}{x}. \]
Now, apply the quotient rule: \[ \frac{dy}{dx}=\frac{v\,u’-u\,v’}{v^2}. \]
Substitute the derivatives: \[ \frac{dy}{dx}=\frac{(\log x)\left(\frac{2}{2x-3}\right)-\log(2x-3)\left(\frac{1}{x}\right)}{(\log x)^2}. \]
Simplify the numerator: \[ \frac{dy}{dx}=\frac{\frac{2\log x}{2x-3}-\frac{\log(2x-3)}{x}}{(\log x)^2}. \]
To combine the two fractions in the numerator, find a common denominator, which is \( x(2x-3) \): \[ \frac{dy}{dx}=\frac{\frac{2x\log x-(2x-3)\log(2x-3)}{x(2x-3)}}{(\log x)^2}. \]
Thus, the derivative is: \[ \frac{dy}{dx}=\frac{2x\log x-(2x-3)\log(2x-3)}{x(2x-3)(\log x)^2}. \]
First, rewrite the logarithm with base \(\cos x\) in terms of natural logarithms: \[ \log_{\cos x} \sin x = \frac{\log(\sin x)}{\log(\cos x)}. \]
Let \[ u = \log(\sin x) \quad \text{and} \quad v = \log(\cos x). \] Then the function becomes: \[ y = \frac{u}{v}. \]
Differentiate \( u \) with respect to \( x \): \[ u’ = \frac{d}{dx} \log(\sin x) = \frac{1}{\sin x} \cdot \cos x = \cot x. \]
Differentiate \( v \) with respect to \( x \): \[ v’ = \frac{d}{dx} \log(\cos x) = \frac{1}{\cos x} \cdot (-\sin x) = -\tan x. \]
Apply the quotient rule: \[ \frac{dy}{dx} = \frac{v\,u’ – u\,v’}{v^2}. \]
Substitute the computed derivatives: \[ \frac{dy}{dx} = \frac{\log(\cos x)\,\cot x – \log(\sin x)\,(-\tan x)}{[\log(\cos x)]^2}. \]
Simplify the numerator: \[ \frac{dy}{dx} = \frac{\log(\cos x)\,\cot x + \log(\sin x)\,\tan x}{[\log(\cos x)]^2}. \]