Here is the complete ML Aggarwal Class 12 Solutions of Chapter Test for Chapter 5 – Continuity and Differentiability. Each question is solved step by step for better understanding.
Question:
1. Is the function defined by \( f(x)=x^{2}-\sin x+5 \) continuous at \( x=\pi \) ?
Solution:
We observe that the function \( f(x)=x^{2}-\sin x+5 \) is composed of the following parts:
\[
x^2,\quad -\sin x,\quad 5.
\]
The polynomial \( x^2 \) and the constant \(5\) are continuous for all \( x \) and the sine function \( \sin x \) is also continuous for all \( x \).
Since the sum of continuous functions is continuous, it follows that \( f(x) \) is continuous at every point, including at \( x=\pi \).
Final Answer:
Yes
Question:
2. (i) Find the value of \( k \) so that
\[
f(x)=\begin{cases}
\frac{\sin kx}{x}, & x<0, \\
8-3x, & x\geq0,
\end{cases}
\]
is continuous at \( x=0 \).
Solution:
For \( f(x) \) to be continuous at \( x=0 \), we require
\[
\lim_{x\to0^-} f(x)=f(0).
\]
Given that for \( x\geq0 \)
\[
f(0)=8-3\cdot 0=8.
\]
Now, consider the left-hand limit:
\[
\lim_{x\to0^-}\frac{\sin kx}{x}.
\]
We rewrite the expression as:
\[
\frac{\sin kx}{x}=k\frac{\sin kx}{kx}.
\]
As \( x\to0 \), note that
\[
\lim_{x\to0}\frac{\sin kx}{kx}=1.
\]
Hence,
\[
\lim_{x\to0^-}\frac{\sin kx}{x}=k.
\]
Setting this equal to \( f(0) \) for continuity:
\[
k=8.
\]
Final Answer:
\( 8 \)
Question:
2. (ii) If the function
\[
f(x)=\begin{cases}
\frac{1-\cos 2x}{2x^{2}}, & x\neq0, \\
k, & x=0,
\end{cases}
\]
is continuous at \( x=0 \), find the value of \( k \).
Solution:
For continuity at \( x=0 \), we require that
\[
\lim_{x\to 0} \frac{1-\cos 2x}{2x^{2}}=f(0)=k.
\]
To evaluate the limit, we use the standard result:
\[
\lim_{x\to 0}\frac{1-\cos ax}{x^{2}}=\frac{a^{2}}{2}.
\]
Here, \( a=2 \). Therefore,
\[
\lim_{x\to 0}\frac{1-\cos2x}{x^{2}}=\frac{2^{2}}{2}=\frac{4}{2}=2.
\]
Since the original expression has a denominator of \( 2x^{2} \), the limit becomes:
\[
\lim_{x\to 0}\frac{1-\cos2x}{2x^{2}}=\frac{1}{2}\lim_{x\to 0}\frac{1-\cos2x}{x^{2}}=\frac{1}{2}\times 2=1.
\]
Equating this with \( k \) for continuity:
\[
k=1.
\]
Final Answer:
\( 1 \)
Question:
2. (iii)If the function
\[
f(x) = \begin{cases}
\frac{1 – \tan x}{4x – \pi}, & \text{if } 0 < x < \frac{\pi}{2},\ x \ne \frac{\pi}{4}, \\
k, & \text{if } x = \frac{\pi}{4},
\end{cases}
\]
is continuous at \( x = \frac{\pi}{4} \), find the value of \( k \).
Hint: Let \( x=\frac{\pi}{4}+h \) so that when \( x \rightarrow \frac{\pi}{4}, \ h \rightarrow 0 \).
Hint: Let \( x=\frac{\pi}{4}+h \) so that when \( x \rightarrow \frac{\pi}{4}, \ h \rightarrow 0 \).
Solution:
For continuity at \( x=\frac{\pi}{4} \), we require
\[
\lim_{x\to \frac{\pi}{4}} f(x)=f\left(\frac{\pi}{4}\right)=k.
\]
Substitute \( x=\frac{\pi}{4}+h \). Then, when \( h\to 0 \), we have:
\[
f\left(\frac{\pi}{4}+h\right)=\frac{1-\tan\left(\frac{\pi}{4}+h\right)}{4\left(\frac{\pi}{4}+h\right)-\pi}.
\]
Simplify the denominator:
\[
4\left(\frac{\pi}{4}+h\right)-\pi=\pi+4h-\pi=4h.
\]
Thus, the function becomes:
\[
f\left(\frac{\pi}{4}+h\right)=\frac{1-\tan\left(\frac{\pi}{4}+h\right)}{4h}.
\]
Now, expand \( \tan\left(\frac{\pi}{4}+h\right) \) using the Taylor series expansion around \( h=0 \):
\[
\tan\left(\frac{\pi}{4}+h\right)=\tan\frac{\pi}{4}+\sec^2\frac{\pi}{4}\cdot h+O(h^2)=1+2h+O(h^2),
\]
since \( \tan\frac{\pi}{4}=1 \) and \( \sec^2\frac{\pi}{4}=2 \).
Substitute this expansion into the numerator:
\[
1-\tan\left(\frac{\pi}{4}+h\right)\approx 1-(1+2h)= -2h.
\]
Therefore, the limit becomes:
\[
\lim_{h\to 0}\frac{-2h}{4h}=\lim_{h\to 0}\frac{-2}{4}=-\frac{1}{2}.
\]
For continuity, \( k \) must equal this limit.
Final Answer:
\( -\frac{1}{2} \)
Question:
4. (i) Find points of discontinuity (if any) of the function
\[
f(x)=\begin{cases}
\frac{x}{|x|}, & x<0, \\
-1, & x \geq 0.
\end{cases}
\]
Solution:
For \( x<0 \), the function is given by
\[
f(x)=\frac{x}{|x|}.
\]
When \( x<0 \), note that \(|x|=-x\). Thus,
\[
f(x)=\frac{x}{-x}=-1.
\]
For \( x\geq0 \), the function is explicitly defined as
\[
f(x)=-1.
\]
Hence, for all \( x\neq 0 \) (in the domain of the first piece) and at \( x=0 \) (the second piece), the function takes the constant value \(-1\).
Therefore, \( f(x) \) is continuous everywhere on its domain.
Final Answer:
There are no points of discontinuity.
Question:
4. (ii) Find points of discontinuity (if any) of the function
\[
f(x)=|x|-|x+1|.
\]
Solution:
The function involves absolute value functions which are continuous for all real \( x \). More precisely, both \( |x| \) and \( |x+1| \) are continuous everywhere. The difference of two continuous functions is also continuous. Therefore, \( f(x)=|x|-|x+1| \) is continuous for all \( x \) in \( \mathbb{R} \).
Final Answer:
There are no points of discontinuity.
Question:
5. Examine the function
\[
f(x) = |x – 1| + |x – 3|
\]
for continuity and differentiability at \( x = 1 \) and \( x = 3 \).
Solution:
We first note that the absolute value function is continuous for all \( x \). Since \( f(x) \) is a sum of absolute value functions, it is continuous everywhere, including at \( x = 1 \) and \( x = 3 \).
For \( x < 1 \):
\[ |x – 1| = 1 – x, \quad |x – 3| = 3 – x, \] so \[ f(x) = (1 – x) + (3 – x) = 4 – 2x. \] The derivative here is \[ f'(x) = -2. \]
For \( 1 < x < 3 \):
\[ |x – 1| = x – 1, \quad |x – 3| = 3 – x, \] thus \[ f(x) = (x – 1) + (3 – x) = 2, \] a constant, so the derivative is \[ f'(x) = 0. \]
At \( x = 1 \):
\[ f'(1^-) = -2, \quad f'(1^+) = 0. \] Since the one-sided derivatives differ, \( f(x) \) is not differentiable at \( x = 1 \).
For \( x > 3 \):
\[ |x – 1| = x – 1, \quad |x – 3| = x – 3, \] so \[ f(x) = (x – 1) + (x – 3) = 2x – 4. \] The derivative for \( x > 3 \) is \[ f'(x) = 2. \]
For \( 1 < x < 3 \) we already found \( f'(x) = 0 \). Thus, at \( x = 3 \):
\[ f'(3^-) = 0, \quad f'(3^+) = 2. \] Since these are not equal, \( f(x) \) is not differentiable at \( x = 3 \).
In summary, \( f(x) \) is continuous for all \( x \) but is not differentiable at \( x = 1 \) and \( x = 3 \).
For \( x < 1 \):
\[ |x – 1| = 1 – x, \quad |x – 3| = 3 – x, \] so \[ f(x) = (1 – x) + (3 – x) = 4 – 2x. \] The derivative here is \[ f'(x) = -2. \]
For \( 1 < x < 3 \):
\[ |x – 1| = x – 1, \quad |x – 3| = 3 – x, \] thus \[ f(x) = (x – 1) + (3 – x) = 2, \] a constant, so the derivative is \[ f'(x) = 0. \]
At \( x = 1 \):
\[ f'(1^-) = -2, \quad f'(1^+) = 0. \] Since the one-sided derivatives differ, \( f(x) \) is not differentiable at \( x = 1 \).
For \( x > 3 \):
\[ |x – 1| = x – 1, \quad |x – 3| = x – 3, \] so \[ f(x) = (x – 1) + (x – 3) = 2x – 4. \] The derivative for \( x > 3 \) is \[ f'(x) = 2. \]
For \( 1 < x < 3 \) we already found \( f'(x) = 0 \). Thus, at \( x = 3 \):
\[ f'(3^-) = 0, \quad f'(3^+) = 2. \] Since these are not equal, \( f(x) \) is not differentiable at \( x = 3 \).
In summary, \( f(x) \) is continuous for all \( x \) but is not differentiable at \( x = 1 \) and \( x = 3 \).
Final Answer:
\( f(x) \) is continuous everywhere. It is not differentiable at \( x = 1 \) and \( x = 3 \).
Question:
6. (i) Find the derivative of
\[
f(x)=\frac{\sqrt{a}+\sqrt{x}}{\sqrt{a}-\sqrt{x}}
\]
with respect to \( x \).
Solution:
Write
\[
u(x)=\sqrt{a}+\sqrt{x} \quad \text{and} \quad v(x)=\sqrt{a}-\sqrt{x}.
\]
Then the derivative \( f'(x) \) using the quotient rule is:
\[
f'(x)=\frac{u'(x)v(x)-u(x)v'(x)}{\left(v(x)\right)^{2}}.
\]
First, compute the derivatives:
\[
u'(x)=\frac{d}{dx}(\sqrt{a}+\sqrt{x})=0+\frac{1}{2\sqrt{x}}=\frac{1}{2\sqrt{x}},
\]
\[
v'(x)=\frac{d}{dx}(\sqrt{a}-\sqrt{x})=0-\frac{1}{2\sqrt{x}}=-\frac{1}{2\sqrt{x}}.
\]
Next, substitute into the quotient rule:
\[
f'(x)=\frac{\frac{1}{2\sqrt{x}}\left(\sqrt{a}-\sqrt{x}\right)-\left(\sqrt{a}+\sqrt{x}\right)\left(-\frac{1}{2\sqrt{x}}\right)}{\left(\sqrt{a}-\sqrt{x}\right)^{2}}.
\]
Simplify the numerator:
\[
\frac{1}{2\sqrt{x}}\left(\sqrt{a}-\sqrt{x}\right)+\frac{1}{2\sqrt{x}}\left(\sqrt{a}+\sqrt{x}\right)
=\frac{1}{2\sqrt{x}}\left[ \left(\sqrt{a}-\sqrt{x}\right)+\left(\sqrt{a}+\sqrt{x}\right)\right]
=\frac{1}{2\sqrt{x}}(2\sqrt{a})
=\frac{\sqrt{a}}{\sqrt{x}}.
\]
Thus, the derivative is:
\[
f'(x)=\frac{\sqrt{a}}{\sqrt{x}\,\left(\sqrt{a}-\sqrt{x}\right)^{2}}.
\]
Final Answer:
\(\displaystyle \frac{\sqrt{a}}{\sqrt{x}\,\left(\sqrt{a}-\sqrt{x}\right)^{2}}\)
Question:
6. (ii) Find the derivative with respect to \( x \) of
\[
f(x)=\frac{1-\tan x}{1+\tan x}.
\]
Solution:
We start by writing
\[
u(x)=1-\tan x,\quad v(x)=1+\tan x.
\]
Then by the quotient rule,
\[
f'(x)=\frac{u'(x)v(x)-u(x)v'(x)}{\left(v(x)\right)^{2}}.
\]
First, compute the derivatives:
\[
u'(x)=-\sec^{2}x,\quad v'(x)=\sec^{2}x.
\]
Then,
\[
\begin{aligned}
f'(x) &= \frac{-\sec^{2}x\,(1+\tan x) – (1-\tan x)\,\sec^{2}x}{\left(1+\tan x\right)^{2}}\\[1mm]
&= \frac{-\sec^{2}x\left[(1+\tan x)+(1-\tan x)\right]}{\left(1+\tan x\right)^{2}}\\[1mm]
&= \frac{-\sec^{2}x\,(2)}{\left(1+\tan x\right)^{2}}\\[1mm]
&= -\frac{2\,\sec^{2}x}{\left(1+\tan x\right)^{2}}.
\end{aligned}
\]
Multiply both the numerator and the denominator by \(\cos^{2}x\) (since \(\sec^{2}x=\frac{1}{\cos^{2}x}\)):
\[
f'(x)=-\frac{2}{\left(1+\tan x\right)^{2}\cos^{2}x}.
\]
Notice that
\[
(1+\tan x)^{2}\cos^{2}x=\left(\cos x+\sin x\right)^{2}.
\]
Also, using the identity
\[
(\cos x+\sin x)^{2}=\cos^{2}x+2\sin x\cos x+\sin^{2}x=1+2\sin x\cos x=1+\sin 2x,
\]
we obtain:
\[
f'(x)=-\frac{2}{1+\sin 2x}.
\]
Final Answer:
\(\displaystyle -\frac{2}{1+\sin2x}\)
Question:
6. (iii) Differentiate
\[
\sin \left(\sqrt{\sin \sqrt{x}}\right)
\]
with respect to \( x \).
Solution:
We start with
\[
f(x)=\sin \left(\sqrt{\sin \sqrt{x}}\right).
\]
Let
\[
u=\sqrt{\sin \sqrt{x}},
\]
so that
\[
f(x)=\sin (u).
\]
Differentiating \( f(x) \) using the chain rule yields:
\[
f'(x)=\cos (u)\cdot \frac{du}{dx}.
\]
Since
\[
u=\left(\sin \sqrt{x}\right)^{\frac{1}{2}},
\]
we differentiate \( u \) with respect to \( x \):
\[
\frac{du}{dx}=\frac{1}{2}\left(\sin \sqrt{x}\right)^{-\frac{1}{2}} \cdot \frac{d}{dx}\left(\sin \sqrt{x}\right).
\]
Now, differentiate \(\sin \sqrt{x}\) by applying the chain rule:
\[
\frac{d}{dx}\left(\sin \sqrt{x}\right)=\cos \sqrt{x}\cdot \frac{d}{dx}\left(\sqrt{x}\right)=\cos \sqrt{x}\cdot \frac{1}{2\sqrt{x}}.
\]
Thus,
\[
\frac{du}{dx}=\frac{1}{2}\left(\sin \sqrt{x}\right)^{-\frac{1}{2}} \cdot \cos \sqrt{x}\cdot \frac{1}{2\sqrt{x}}=\frac{\cos \sqrt{x}}{4\sqrt{x}\sqrt{\sin \sqrt{x}}}.
\]
Substituting back into the expression for \( f'(x) \):
\[
f'(x)=\cos \left(\sqrt{\sin \sqrt{x}}\right)\cdot \frac{\cos \sqrt{x}}{4\sqrt{x}\sqrt{\sin \sqrt{x}}}.
\]
Final Answer:
\[
f'(x)=\frac{\cos \left(\sqrt{\sin \sqrt{x}}\right)\cos \sqrt{x}}{4\sqrt{x}\sqrt{\sin \sqrt{x}}}.
\]
Question:
7. (i) Differentiate
\[
\frac{\tan 2x}{1-\cot 2x}
\]
with respect to \( x \).
Solution:
Let
\[
f(x)=\frac{\tan 2x}{1-\cot 2x}.
\]
Define
\[
u(x)=\tan 2x \quad \text{and} \quad v(x)=1-\cot 2x.
\]
Then,
\[
u'(x)=\frac{d}{dx}(\tan 2x)=2\sec^2 2x,
\]
and
\[
v'(x)=\frac{d}{dx}(1-\cot 2x)=2\,\mathrm{cosec}^2 2x.
\]
Using the quotient rule,
\[
f'(x)=\frac{u'(x)v(x)-u(x)v'(x)}{\left[v(x)\right]^2}=\frac{2\sec^2 2x\,(1-\cot 2x)-\tan 2x\,(2\,\mathrm{cosec}^2 2x)}{(1-\cot 2x)^2}.
\]
Factor out \( 2 \) in the numerator:
\[
f'(x)=\frac{2\left[\sec^2 2x\,(1-\cot 2x)-\tan 2x\,\mathrm{cosec}^2 2x\right]}{(1-\cot 2x)^2}.
\]
Notice that
\[
\tan 2x\,\mathrm{cosec}^2 2x=\frac{\sin 2x}{\cos 2x}\cdot \frac{1}{\sin^2 2x}=\frac{1}{\cos 2x\,\sin 2x}=\frac{2}{2\cos 2x\,\sin 2x}=\frac{2}{\sin 4x}=2\,\mathrm{cosec}4x.
\]
Therefore, the derivative simplifies to:
\[
f'(x)=\frac{2\left[\sec^2 2x\,(1-\cot 2x)-2\,\mathrm{cosec}4x\right]}{(1-\cot 2x)^2}.
\]
Final Answer:
\[
f'(x)=\frac{2\left[\sec^2 2x\,(1-\cot 2x)-2\,\mathrm{cosec}4x\right]}{(1-\cot 2x)^2}.
\]
Question:
7. (ii) Differentiate
\[
\sin\left(\frac{1+x^{2}}{1-x^{2}}\right)
\]
with respect to \( x \).
Solution:
Let
\[
f(x)=\sin\left(\frac{1+x^{2}}{1-x^{2}}\right).
\]
Define
\[
\theta(x)=\frac{1+x^{2}}{1-x^{2}}.
\]
Then, by the chain rule,
\[
f'(x)=\cos\left(\theta(x)\right)\cdot\theta'(x).
\]
To compute \(\theta'(x)\), write
\[
\theta(x)=\frac{u(x)}{v(x)},
\]
where
\[
u(x)=1+x^{2} \quad \text{and} \quad v(x)=1-x^{2}.
\]
Differentiating, we obtain:
\[
u'(x)=2x, \quad v'(x)=-2x.
\]
Applying the quotient rule,
\[
\theta'(x)=\frac{u'(x)v(x)-u(x)v'(x)}{\left[v(x)\right]^2}
= \frac{2x(1-x^{2})- (1+x^{2})(-2x)}{(1-x^{2})^2}.
\]
Simplify the numerator:
\[
2x(1-x^{2})+2x(1+x^{2})=2x\Big[(1-x^{2})+(1+x^{2})\Big]=2x(2)=4x.
\]
Hence,
\[
\theta'(x)=\frac{4x}{(1-x^{2})^2}.
\]
Substituting back into the derivative:
\[
f'(x)=\cos\left(\frac{1+x^{2}}{1-x^{2}}\right)\cdot \frac{4x}{(1-x^{2})^2}.
\]
Final Answer:
\[
f'(x)=\frac{4x}{(1-x^{2})^2}\cos\left(\frac{1+x^{2}}{1-x^{2}}\right).
\]
Question:
7. (iii) Differentiate
\[
\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}
\]
with respect to \( x \).
Solution:
We start with
\[
f(x)=\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}.
\]
To simplify \( f(x) \), multiply the numerator and denominator by the conjugate of the denominator:
\[
f(x)=\frac{\left(\sqrt{1+\sin x}+\sqrt{1-\sin x}\right)^2}{\left(\sqrt{1+\sin x}\right)^2-\left(\sqrt{1-\sin x}\right)^2}.
\]
Since
\[
\left(\sqrt{1+\sin x}\right)^2=1+\sin x \quad \text{and} \quad \left(\sqrt{1-\sin x}\right)^2=1-\sin x,
\]
the denominator becomes:
\[
(1+\sin x)-(1-\sin x)=2\sin x.
\]
Next, expanding the numerator:
\[
\left(\sqrt{1+\sin x}+\sqrt{1-\sin x}\right)^2 = (1+\sin x)+(1-\sin x)+2\sqrt{(1+\sin x)(1-\sin x)}.
\]
Notice that
\[
(1+\sin x)+(1-\sin x)=2 \quad \text{and} \quad \sqrt{(1+\sin x)(1-\sin x)}=\sqrt{1-\sin^2 x}=\lvert\cos x\rvert.
\]
Assuming the domain where \(\cos x\ge0\) (for instance, \(x\) in \(\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\)), we have:
\[
\sqrt{(1+\sin x)(1-\sin x)}=\cos x.
\]
Thus, the numerator simplifies to:
\[
2+2\cos x=2(1+\cos x).
\]
Therefore,
\[
f(x)=\frac{2(1+\cos x)}{2\sin x}=\frac{1+\cos x}{\sin x}.
\]
Using the half-angle identity,
\[
\cot\frac{x}{2}=\frac{1+\cos x}{\sin x},
\]
we write
\[
f(x)=\cot\frac{x}{2}.
\]
Now, differentiating \( f(x)=\cot\frac{x}{2} \) with respect to \( x \):
\[
f'(x)=\frac{d}{dx}\left(\cot\frac{x}{2}\right).
\]
Recall that:
\[
\frac{d}{dx}\left(\cot u\right)=-\mathrm{cosec}^{2}u\cdot\frac{du}{dx},
\]
where here \( u=\frac{x}{2} \) and \(\frac{du}{dx}=\frac{1}{2}\). Thus,
\[
f'(x)=-\mathrm{cosec}^{2}\frac{x}{2}\cdot\frac{1}{2}=-\frac{1}{2}\,\mathrm{cosec}^{2}\frac{x}{2}.
\]
Final Answer:
\[
f'(x)=-\frac{1}{2}\,\mathrm{cosec}^{2}\frac{x}{2}.
\]
Question:
8. (i) If
\[
y=\log\!\left(\frac{a+b \tan \frac{x}{2}}{a-b \tan \frac{x}{2}}\right),
\]
prove that
\[
\frac{dy}{dx}=\frac{ab}{a^{2}\cos^{2}\frac{x}{2}-b^{2}\sin^{2}\frac{x}{2}}.
\]
Solution:
We begin by rewriting the function \( y \) as the difference of two logarithms:
\[
y=\log\!\left(a+b \tan \frac{x}{2}\right)-\log\!\left(a-b \tan \frac{x}{2}\right).
\]
Differentiating term by term, we have
\[
\frac{d}{dx}\left[\log\!\left(a+b \tan \frac{x}{2}\right)\right]
= \frac{1}{a+b \tan \frac{x}{2}}\cdot \frac{d}{dx}\left(a+b \tan \frac{x}{2}\right),
\]
and
\[
\frac{d}{dx}\left[\log\!\left(a-b \tan \frac{x}{2}\right)\right]
= \frac{1}{a-b \tan \frac{x}{2}}\cdot \frac{d}{dx}\left(a-b \tan \frac{x}{2}\right).
\]
Since
\[
\frac{d}{dx}\left(\tan \frac{x}{2}\right)
= \sec^2\frac{x}{2}\cdot \frac{1}{2},
\]
we obtain:
\[
\frac{d}{dx}\left(a+b \tan \frac{x}{2}\right)
= b\cdot \frac{1}{2}\sec^2\frac{x}{2}
= \frac{b}{2}\sec^2\frac{x}{2},
\]
and similarly,
\[
\frac{d}{dx}\left(a-b \tan \frac{x}{2}\right)
= -\frac{b}{2}\sec^2\frac{x}{2}.
\]
Therefore, the derivative of \( y \) is
\[
\frac{dy}{dx}
= \frac{\frac{b}{2}\sec^2\frac{x}{2}}{a+b \tan \frac{x}{2}}
– \left(\frac{-\frac{b}{2}\sec^2\frac{x}{2}}{a-b \tan \frac{x}{2}}\right)
= \frac{b}{2}\sec^2\frac{x}{2}\left[\frac{1}{a+b \tan \frac{x}{2}}
+\frac{1}{a-b \tan \frac{x}{2}}\right].
\]
Combine the two fractions:
\[
\frac{1}{a+b \tan \frac{x}{2}}+\frac{1}{a-b \tan \frac{x}{2}}
= \frac{\Bigl(a-b \tan \frac{x}{2}\Bigr)+\Bigl(a+b \tan \frac{x}{2}\Bigr)}
{\Bigl(a+b \tan \frac{x}{2}\Bigr)\Bigl(a-b \tan \frac{x}{2}\Bigr)}
= \frac{2a}{a^{2}-b^{2}\tan^{2}\frac{x}{2}}.
\]
Substituting back, we get
\[
\frac{dy}{dx}=\frac{b}{2}\sec^2\frac{x}{2}\cdot\frac{2a}{a^{2}-b^{2}\tan^{2}\frac{x}{2}}
=\frac{ab\,\sec^2\frac{x}{2}}{a^{2}-b^{2}\tan^{2}\frac{x}{2}}.
\]
Express the denominator in terms of cosine using
\[
\tan^{2}\frac{x}{2}=\frac{\sin^{2}\frac{x}{2}}{\cos^{2}\frac{x}{2}},
\]
so that
\[
a^{2}-b^{2}\tan^{2}\frac{x}{2}
= a^{2}-b^{2}\frac{\sin^{2}\frac{x}{2}}{\cos^{2}\frac{x}{2}}
= \frac{a^{2}\cos^{2}\frac{x}{2}-b^{2}\sin^{2}\frac{x}{2}}{\cos^{2}\frac{x}{2}}.
\]
Thus, the derivative becomes
\[
\frac{dy}{dx}=\frac{ab\,\sec^2\frac{x}{2}}{\displaystyle \frac{a^{2}\cos^{2}\frac{x}{2}-b^{2}\sin^{2}\frac{x}{2}}{\cos^{2}\frac{x}{2}}}
=\frac{ab\,\sec^2\frac{x}{2}\cos^{2}\frac{x}{2}}{a^{2}\cos^{2}\frac{x}{2}-b^{2}\sin^{2}\frac{x}{2}}.
\]
Since \( \sec^2\frac{x}{2}\cos^{2}\frac{x}{2}=1 \), we obtain the desired result:
\[
\frac{dy}{dx}=\frac{ab}{a^{2}\cos^{2}\frac{x}{2}-b^{2}\sin^{2}\frac{x}{2}}.
\]
Final Answer:
\[
\frac{dy}{dx}=\frac{ab}{a^{2}\cos^{2}\frac{x}{2}-b^{2}\sin^{2}\frac{x}{2}}.
\]
Question:
8. (ii) If
\[
2y=x\sqrt{x^{2}-a^{2}}-a^{2}\log\!\left(x+\sqrt{x^{2}-a^{2}}\right),
\]
prove that
\[
\frac{dy}{dx}=\sqrt{x^{2}-a^{2}}.
\]
Solution:
We start with
\[
2y=x\sqrt{x^{2}-a^{2}}-a^{2}\log\!\left(x+\sqrt{x^{2}-a^{2}}\right).
\]
Differentiating both sides with respect to \( x \), we obtain:
\[
\frac{d}{dx}(2y)=\frac{d}{dx}\left[x\sqrt{x^{2}-a^{2}}\right]-a^{2}\frac{d}{dx}\left[\log\!\left(x+\sqrt{x^{2}-a^{2}}\right)\right].
\]
That is,
\[
2\frac{dy}{dx}=\frac{d}{dx}\left[x\sqrt{x^{2}-a^{2}}\right]-a^{2}\frac{d}{dx}\left[\log\!\left(x+\sqrt{x^{2}-a^{2}}\right)\right].
\]
**Step 1. Differentiate \( x\sqrt{x^{2}-a^{2}} \):**
Let
\[
F(x)=x\sqrt{x^{2}-a^{2}}.
\]
Using the product rule,
\[
F'(x)=\sqrt{x^{2}-a^{2}}+x\cdot\frac{d}{dx}\left(\sqrt{x^{2}-a^{2}}\right).
\]
Since
\[
\sqrt{x^{2}-a^{2}}=(x^{2}-a^{2})^{\frac{1}{2}},
\]
we have
\[
\frac{d}{dx}\left(\sqrt{x^{2}-a^{2}}\right)
=\frac{1}{2}(x^{2}-a^{2})^{-\frac{1}{2}}\cdot2x
=\frac{x}{\sqrt{x^{2}-a^{2}}}.
\]
Therefore,
\[
F'(x)=\sqrt{x^{2}-a^{2}}+x\cdot\frac{x}{\sqrt{x^{2}-a^{2}}}
=\sqrt{x^{2}-a^{2}}+\frac{x^{2}}{\sqrt{x^{2}-a^{2}}}.
\]
Combining the terms over a common denominator yields:
\[
F'(x)=\frac{x^{2}-a^{2}+x^{2}}{\sqrt{x^{2}-a^{2}}}
=\frac{2x^{2}-a^{2}}{\sqrt{x^{2}-a^{2}}}.
\]
**Step 2. Differentiate \( \log\!\left(x+\sqrt{x^{2}-a^{2}}\right) \):**
Let
\[
G(x)=\log\!\left(x+\sqrt{x^{2}-a^{2}}\right).
\]
Its derivative is
\[
G'(x)=\frac{1}{x+\sqrt{x^{2}-a^{2}}}\cdot\frac{d}{dx}\left(x+\sqrt{x^{2}-a^{2}}\right).
\]
We have
\[
\frac{d}{dx}\left(x+\sqrt{x^{2}-a^{2}}\right)
=1+\frac{x}{\sqrt{x^{2}-a^{2}}}.
\]
Thus,
\[
G'(x)=\frac{1}{x+\sqrt{x^{2}-a^{2}}}\left(1+\frac{x}{\sqrt{x^{2}-a^{2}}}\right)
=\frac{\sqrt{x^{2}-a^{2}}+x}{\sqrt{x^{2}-a^{2}}\left(x+\sqrt{x^{2}-a^{2}}\right)}.
\]
Notice that the numerator and denominator have the common factor \( x+\sqrt{x^{2}-a^{2}} \), so it simplifies to:
\[
G'(x)=\frac{1}{\sqrt{x^{2}-a^{2}}}.
\]
**Step 3. Combine the derivatives:**
Substituting the derivatives of \( F(x) \) and \( G(x) \) into the differentiation of the given equation, we have:
\[
2\frac{dy}{dx}=\frac{2x^{2}-a^{2}}{\sqrt{x^{2}-a^{2}}}-a^{2}\cdot\frac{1}{\sqrt{x^{2}-a^{2}}}
=\frac{2x^{2}-a^{2}-a^{2}}{\sqrt{x^{2}-a^{2}}}
=\frac{2x^{2}-2a^{2}}{\sqrt{x^{2}-a^{2}}}.
\]
Simplify further:
\[
2\frac{dy}{dx}=\frac{2\left(x^{2}-a^{2}\right)}{\sqrt{x^{2}-a^{2}}}
=2\sqrt{x^{2}-a^{2}}.
\]
Dividing both sides by 2,
\[
\frac{dy}{dx}=\sqrt{x^{2}-a^{2}}.
\]
Hence, we have proved that
\[
\frac{dy}{dx}=\sqrt{x^{2}-a^{2}}.
\]
Final Answer:
\[
\frac{dy}{dx}=\sqrt{x^{2}-a^{2}}.
\]
Question 8(iii):
If
\[
x=2a\sin^{-1}\sqrt{\frac{y}{2a}}-\sqrt{2ay-y^{2}},
\]
prove that
\[
\frac{dy}{dx}=\sqrt{\frac{2a-y}{y}}.
\]
Hint: Let \( u=\sqrt{\frac{y}{2a}} \) in the first term and differentiate each term with respect to \( y \) separately.
Hint: Let \( u=\sqrt{\frac{y}{2a}} \) in the first term and differentiate each term with respect to \( y \) separately.
Solution:
We begin with
\[
x=2a\sin^{-1}\sqrt{\frac{y}{2a}}-\sqrt{2ay-y^2}.
\]
Define
\[
I=2a\sin^{-1}\sqrt{\frac{y}{2a}}, \quad II=\sqrt{2ay-y^2}.
\]
Step 1: Differentiate \( I \) with respect to \( y \).
Let \[ u=\sqrt{\frac{y}{2a}}, \quad \text{so that} \quad I=2a\sin^{-1}(u). \] Differentiating using the chain rule: \[ \frac{d}{dy}\left[\sin^{-1}(u)\right]=\frac{1}{\sqrt{1-u^2}}\cdot\frac{du}{dy}. \] Since \[ u=\left(\frac{y}{2a}\right)^{\frac{1}{2}}, \quad \text{we have} \quad \frac{du}{dy}=\frac{1}{2\sqrt{2a}}\frac{1}{\sqrt{y}}. \] Note that \[ u^2=\frac{y}{2a} \quad \Rightarrow \quad 1-u^2=1-\frac{y}{2a}=\frac{2a-y}{2a}, \] and hence \[ \sqrt{1-u^2}=\sqrt{\frac{2a-y}{2a}}. \] Therefore, \[ \frac{d}{dy}\left[\sin^{-1}\sqrt{\frac{y}{2a}}\right]=\frac{1}{\sqrt{\frac{2a-y}{2a}}}\cdot\frac{1}{2\sqrt{2a}}\frac{1}{\sqrt{y}} =\sqrt{\frac{2a}{2a-y}}\cdot\frac{1}{2\sqrt{2a}}\frac{1}{\sqrt{y}}. \] Multiplying by \( 2a \) gives \[ I_y=2a\cdot \sqrt{\frac{2a}{2a-y}}\cdot\frac{1}{2\sqrt{2a}}\frac{1}{\sqrt{y}} =\frac{a}{\sqrt{y(2a-y)}}. \]
Step 2: Differentiate \( II \) with respect to \( y \).
Write \[ II=\sqrt{2ay-y^2}=\left(2ay-y^2\right)^{\frac{1}{2}}. \] Differentiating using the chain rule, \[ II_y=\frac{1}{2}(2ay-y^2)^{-\frac{1}{2}}\cdot (2a-2y) =\frac{2a-2y}{2\sqrt{2ay-y^2}}. \] Recognizing that \[ \sqrt{2ay-y^2}=\sqrt{y(2a-y)}, \] we have \[ II_y=\frac{a-y}{\sqrt{y(2a-y)}}. \]
Step 3: Compute \(\frac{dx}{dy}\) and then \(\frac{dy}{dx}\).
Since \[ x= I- II, \] it follows that \[ \frac{dx}{dy}=I_y- II_y =\frac{a}{\sqrt{y(2a-y)}}-\frac{a-y}{\sqrt{y(2a-y)}} =\frac{a-(a-y)}{\sqrt{y(2a-y)}} =\frac{y}{\sqrt{y(2a-y)}}. \] Thus, \[ \frac{dx}{dy}=\sqrt{\frac{y}{2a-y}}. \] Taking the reciprocal, we conclude that \[ \frac{dy}{dx}=\sqrt{\frac{2a-y}{y}}. \]
Step 1: Differentiate \( I \) with respect to \( y \).
Let \[ u=\sqrt{\frac{y}{2a}}, \quad \text{so that} \quad I=2a\sin^{-1}(u). \] Differentiating using the chain rule: \[ \frac{d}{dy}\left[\sin^{-1}(u)\right]=\frac{1}{\sqrt{1-u^2}}\cdot\frac{du}{dy}. \] Since \[ u=\left(\frac{y}{2a}\right)^{\frac{1}{2}}, \quad \text{we have} \quad \frac{du}{dy}=\frac{1}{2\sqrt{2a}}\frac{1}{\sqrt{y}}. \] Note that \[ u^2=\frac{y}{2a} \quad \Rightarrow \quad 1-u^2=1-\frac{y}{2a}=\frac{2a-y}{2a}, \] and hence \[ \sqrt{1-u^2}=\sqrt{\frac{2a-y}{2a}}. \] Therefore, \[ \frac{d}{dy}\left[\sin^{-1}\sqrt{\frac{y}{2a}}\right]=\frac{1}{\sqrt{\frac{2a-y}{2a}}}\cdot\frac{1}{2\sqrt{2a}}\frac{1}{\sqrt{y}} =\sqrt{\frac{2a}{2a-y}}\cdot\frac{1}{2\sqrt{2a}}\frac{1}{\sqrt{y}}. \] Multiplying by \( 2a \) gives \[ I_y=2a\cdot \sqrt{\frac{2a}{2a-y}}\cdot\frac{1}{2\sqrt{2a}}\frac{1}{\sqrt{y}} =\frac{a}{\sqrt{y(2a-y)}}. \]
Step 2: Differentiate \( II \) with respect to \( y \).
Write \[ II=\sqrt{2ay-y^2}=\left(2ay-y^2\right)^{\frac{1}{2}}. \] Differentiating using the chain rule, \[ II_y=\frac{1}{2}(2ay-y^2)^{-\frac{1}{2}}\cdot (2a-2y) =\frac{2a-2y}{2\sqrt{2ay-y^2}}. \] Recognizing that \[ \sqrt{2ay-y^2}=\sqrt{y(2a-y)}, \] we have \[ II_y=\frac{a-y}{\sqrt{y(2a-y)}}. \]
Step 3: Compute \(\frac{dx}{dy}\) and then \(\frac{dy}{dx}\).
Since \[ x= I- II, \] it follows that \[ \frac{dx}{dy}=I_y- II_y =\frac{a}{\sqrt{y(2a-y)}}-\frac{a-y}{\sqrt{y(2a-y)}} =\frac{a-(a-y)}{\sqrt{y(2a-y)}} =\frac{y}{\sqrt{y(2a-y)}}. \] Thus, \[ \frac{dx}{dy}=\sqrt{\frac{y}{2a-y}}. \] Taking the reciprocal, we conclude that \[ \frac{dy}{dx}=\sqrt{\frac{2a-y}{y}}. \]
Final Answer:
\[
\frac{dy}{dx}=\sqrt{\frac{2a-y}{y}}.
\]
Question 9(i):
Differentiate the function
\[
y=\sin^{-1}\left(\frac{a+b\cos x}{b+a\cos x}\right)
\]
with respect to \(x\).
Solution:
Let
\[
u(x)=\frac{a+b\cos x}{b+a\cos x}.
\]
Then
\[
y=\sin^{-1}\left(u(x)\right)
\]
and by the chain rule,
\[
\frac{dy}{dx}=\frac{u'(x)}{\sqrt{1-u(x)^2}}.
\]
Step 1. Compute \(u'(x)\):
Write
\[
u(x)=\frac{N(x)}{D(x)},\quad \text{with } N(x)=a+b\cos x,\quad D(x)=b+a\cos x.
\]
Differentiating gives:
\[
N'(x)=-b\sin x,\quad D'(x)=-a\sin x.
\]
Applying the quotient rule,
\[
u'(x)=\frac{N'(x)D(x)-N(x)D'(x)}{[D(x)]^2}
=\frac{(-b\sin x)(b+a\cos x)- (a+b\cos x)(-a\sin x)}{(b+a\cos x)^2}.
\]
Simplify the numerator:
\[
\begin{aligned}
&(-b\sin x)(b+a\cos x)+(a+b\cos x)(a\sin x)\\[2mm]
&= -b\sin x\,(b+a\cos x)+a\sin x\,(a+b\cos x)\\[2mm]
&=\sin x\Bigl[a(a+b\cos x)-b(b+a\cos x)\Bigr]\\[2mm]
&=\sin x\Bigl[a^2+ab\cos x-b^2-ab\cos x\Bigr]\\[2mm]
&=\sin x\,(a^2-b^2).
\end{aligned}
\]
Hence,
\[
u'(x)=\frac{(a^2-b^2)\sin x}{(b+a\cos x)^2}.
\]
Step 2. Compute \(1-u(x)^2\):
Since
\[
u(x)^2=\frac{(a+b\cos x)^2}{(b+a\cos x)^2},
\]
it follows that
\[
1-u(x)^2=\frac{(b+a\cos x)^2-(a+b\cos x)^2}{(b+a\cos x)^2}.
\]
Expand the numerator:
\[
\begin{aligned}
(b+a\cos x)^2&=b^2+2ab\cos x+a^2\cos^2 x,\\[2mm]
(a+b\cos x)^2&=a^2+2ab\cos x+b^2\cos^2 x.
\end{aligned}
\]
Their difference gives:
\[
\begin{aligned}
(b+a\cos x)^2-(a+b\cos x)^2
&=\left[b^2+2ab\cos x+a^2\cos^2 x\right]-\left[a^2+2ab\cos x+b^2\cos^2 x\right]\\[2mm]
&= (b^2-a^2)+(a^2\cos^2 x-b^2\cos^2 x)\\[2mm]
&= (b^2-a^2)(1-\cos^2 x)\\[2mm]
&= (b^2-a^2)\sin^2 x.
\end{aligned}
\]
Thus,
\[
1-u(x)^2=\frac{(b^2-a^2)\sin^2 x}{(b+a\cos x)^2}.
\]
Taking the square root (assuming \(b+a\cos x>0\) and a suitable domain for \(x\)),
\[
\sqrt{1-u(x)^2}=\frac{\sqrt{b^2-a^2}\,|\sin x|}{b+a\cos x}.
\]
Within a domain where \(\sin x\) is nonnegative, this simplifies to
\[
\sqrt{1-u(x)^2}=\frac{\sqrt{b^2-a^2}\,\sin x}{b+a\cos x}.
\]
Step 3. Combine the results:
Substitute \(u'(x)\) and \(\sqrt{1-u(x)^2}\) into the chain rule expression:
\[
\frac{dy}{dx}=\frac{\displaystyle \frac{(a^2-b^2)\sin x}{(b+a\cos x)^2}}{\displaystyle \frac{\sqrt{b^2-a^2}\,\sin x}{b+a\cos x}}
=\frac{(a^2-b^2)\sin x}{(b+a\cos x)^2} \cdot \frac{b+a\cos x}{\sqrt{b^2-a^2}\,\sin x}.
\]
Cancel \(\sin x\) and one factor of \((b+a\cos x)\):
\[
\frac{dy}{dx}=\frac{a^2-b^2}{(b+a\cos x)\sqrt{b^2-a^2}}.
\]
Since \(a^2-b^2=-(b^2-a^2)\), we have
\[
\frac{dy}{dx}=-\frac{\sqrt{b^2-a^2}}{b+a\cos x}.
\]
Final Answer:
\[
\frac{dy}{dx}=-\frac{\sqrt{b^2-a^2}}{b+a\cos x}.
\]
Question 9(ii):
Differentiate the function
\[
y=\cot^{-1}\!\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)
\]
with respect to \(x\).
Solution:
Let
\[
u(x)=\frac{\sqrt{1+x^{2}}-1}{x}.
\]
Then
\[
y=\cot^{-1}(u(x)) \quad\text{and}\quad \frac{dy}{dx}=-\frac{u'(x)}{1+u(x)^2}.
\]
We first differentiate \( u(x) \) using the quotient rule. Writing
\[
u(x)=\frac{N(x)}{D(x)} \quad \text{with} \quad N(x)=\sqrt{1+x^{2}}-1 \quad\text{and}\quad D(x)=x,
\]
we have
\[
N'(x)=\frac{x}{\sqrt{1+x^{2}}}, \quad D'(x)=1.
\]
Thus,
\[
u'(x)=\frac{D(x)N'(x)-N(x)D'(x)}{D(x)^2}
=\frac{x\left(\frac{x}{\sqrt{1+x^{2}}}\right)-\Bigl(\sqrt{1+x^{2}}-1\Bigr)}{x^2}.
\]
Simplify the numerator:
\[
\frac{x^2}{\sqrt{1+x^{2}}}-\sqrt{1+x^{2}}+1.
\]
Writing all terms over the common denominator \(\sqrt{1+x^{2}}\),
\[
u'(x)=\frac{\frac{x^2-\Bigl(1+x^{2}\Bigr)+\sqrt{1+x^{2}}}{\sqrt{1+x^{2}}}}{x^2}
=\frac{\sqrt{1+x^{2}}-1}{x^2\sqrt{1+x^{2}}}.
\]
Next, we compute \(1+u(x)^2\). Since
\[
u(x)^2=\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)^2=\frac{\Bigl(\sqrt{1+x^{2}}-1\Bigr)^2}{x^2},
\]
we have
\[
1+u(x)^2=\frac{x^2+\Bigl(\sqrt{1+x^{2}}-1\Bigr)^2}{x^2}.
\]
Note that
\[
\Bigl(\sqrt{1+x^{2}}-1\Bigr)^2=1+x^{2}-2\sqrt{1+x^{2}}+1=x^{2}+2-2\sqrt{1+x^{2}},
\]
so that
\[
1+u(x)^2=\frac{x^2+(x^{2}+2-2\sqrt{1+x^{2}})}{x^2}
=\frac{2x^2+2-2\sqrt{1+x^{2}}}{x^2}.
\]
Factor out 2:
\[
1+u(x)^2=\frac{2\Bigl(x^2+1-\sqrt{1+x^{2}}\Bigr)}{x^2}.
\]
Notice that
\[
x^2+1=\left(\sqrt{1+x^{2}}\right)^2,
\]
so that
\[
x^2+1-\sqrt{1+x^{2}}=\sqrt{1+x^{2}}\Bigl(\sqrt{1+x^{2}}-1\Bigr).
\]
Therefore,
\[
1+u(x)^2=\frac{2\sqrt{1+x^{2}}\Bigl(\sqrt{1+x^{2}}-1\Bigr)}{x^2}.
\]
Now, substituting \( u'(x) \) and \( 1+u(x)^2 \) into the derivative formula:
\[
\frac{dy}{dx}=-\frac{u'(x)}{1+u(x)^2}
=-\frac{\displaystyle \frac{\sqrt{1+x^{2}}-1}{x^2\sqrt{1+x^{2}}}}{\displaystyle \frac{2\sqrt{1+x^{2}}\,(\sqrt{1+x^{2}}-1)}{x^2}}
=-\frac{\sqrt{1+x^{2}}-1}{x^2\sqrt{1+x^{2}}}\cdot\frac{x^2}{2\sqrt{1+x^{2}}(\sqrt{1+x^{2}}-1)}.
\]
Cancel the common factors \( x^2 \) and \(\sqrt{1+x^{2}}-1\) (provided \( x\neq 0 \)):
\[
\frac{dy}{dx}=-\frac{1}{2\sqrt{1+x^{2}}\cdot\sqrt{1+x^{2}}}
=-\frac{1}{2(1+x^{2})}.
\]
Final Answer:
\[
\frac{dy}{dx}=-\frac{1}{2(1+x^{2})}.
\]
Question 9(iii):
Differentiate with respect to x:
\[
y=\tan^{-1}\sqrt{\frac{a-x}{a+x}},
\]
Solution:
Begin with
\[
y=\tan^{-1}\sqrt{\frac{a-x}{a+x}}.
\]
Define
\[
u=\sqrt{\frac{a-x}{a+x}},
\]
so that
\[
y=\tan^{-1}(u)
\]
and by the chain rule,
\[
\frac{dy}{dx}=\frac{1}{1+u^2}\,\frac{du}{dx}.
\]
Step 1. Compute \(u^2\) and \(1+u^2\):
We have
\[
u^2=\frac{a-x}{a+x}.
\]
Therefore,
\[
1+u^2=1+\frac{a-x}{a+x}=\frac{(a+x)+(a-x)}{a+x}=\frac{2a}{a+x}.
\]
Step 2. Differentiate \(u\) with respect to \(x\):
Write
\[
u=\left(\frac{a-x}{a+x}\right)^{\frac{1}{2}}.
\]
Then by the chain rule,
\[
\frac{du}{dx}=\frac{1}{2}\left(\frac{a-x}{a+x}\right)^{-\frac{1}{2}}\cdot \frac{d}{dx}\left(\frac{a-x}{a+x}\right).
\]
To differentiate \(\frac{a-x}{a+x}\), let
\[
F(x)=a-x\quad \text{and}\quad G(x)=a+x,
\]
so that \(F'(x)=-1\) and \(G'(x)=1\). Then, by the quotient rule,
\[
\frac{d}{dx}\left(\frac{a-x}{a+x}\right)=\frac{G(x)F'(x)-F(x)G'(x)}{(a+x)^2}=\frac{(a+x)(-1)-(a-x)(1)}{(a+x)^2}=\frac{-2a}{(a+x)^2}.
\]
Hence,
\[
\frac{du}{dx}=\frac{1}{2}\left(\frac{a-x}{a+x}\right)^{-\frac{1}{2}}\cdot \frac{-2a}{(a+x)^2}
=-\frac{a}{(a+x)^2}\left(\frac{a-x}{a+x}\right)^{-\frac{1}{2}}.
\]
Recognize that
\[
\left(\frac{a-x}{a+x}\right)^{-\frac{1}{2}}=\sqrt{\frac{a+x}{a-x}},
\]
so that
\[
\frac{du}{dx}=-\frac{a}{(a+x)^2}\sqrt{\frac{a+x}{a-x}}.
\]
Step 3. Combine the results to find \(\frac{dy}{dx}\):
Substitute the expressions for \(1+u^2\) and \(\frac{du}{dx}\) into the chain rule:
\[
\frac{dy}{dx}=\frac{1}{\frac{2a}{a+x}}\left(-\frac{a}{(a+x)^2}\sqrt{\frac{a+x}{a-x}}\right)
=\frac{a+x}{2a}\left(-\frac{a}{(a+x)^2}\sqrt{\frac{a+x}{a-x}}\right).
\]
Cancel the factor \(a\) and simplify:
\[
\frac{dy}{dx}=-\frac{1}{2}\,\frac{1}{a+x}\sqrt{\frac{a+x}{a-x}}.
\]
Notice that
\[
\sqrt{\frac{a+x}{a-x}}=\frac{\sqrt{a+x}}{\sqrt{a-x}},
\]
so that
\[
\frac{dy}{dx}=-\frac{1}{2}\,\frac{\sqrt{a+x}}{(a+x)\sqrt{a-x}}
=-\frac{1}{2}\,\frac{1}{\sqrt{(a+x)(a-x)}}.
\]
Since
\[
(a+x)(a-x)=a^2-x^2,
\]
it follows that
\[
\frac{dy}{dx}=-\frac{1}{2\sqrt{a^2-x^2}}.
\]
Final Answer:
\[
\frac{dy}{dx}=-\frac{1}{2\sqrt{a^2-x^2}}.
\]
Question 10:
If
\[
y = 2\tan^{-1}\sqrt{\frac{x-a}{b-x}},\quad a < x < b,
\]
prove that
\[
\left(\frac{dy}{dx}\right)^2 + \frac{1}{(x-a)(x-b)} = 0.
\]
Solution:
We start with
\[
y = 2\tan^{-1}\sqrt{\frac{x-a}{b-x}}.
\]
Let
\[
w = \sqrt{\frac{x-a}{b-x}},
\]
so that
\[
y = 2\tan^{-1}(w).
\]
Differentiating \(y\) with respect to \(x\) by the chain rule gives
\[
\frac{dy}{dx} = 2\cdot\frac{1}{1+w^2}\cdot\frac{dw}{dx}.
\]
Step 1. Compute \(1+w^2\):
Since
\[
w^2 = \frac{x-a}{b-x},
\]
it follows that
\[
1+w^2 = 1+\frac{x-a}{b-x}
= \frac{(b-x)+(x-a)}{b-x}
= \frac{b-a}{b-x}.
\]
Thus,
\[
\frac{1}{1+w^2} = \frac{b-x}{b-a}.
\]
Step 2. Differentiate \(w\) with respect to \(x\):
Write
\[
w = \left(\frac{x-a}{b-x}\right)^{\frac{1}{2}}.
\]
Taking natural logarithms, we have
\[
\ln w = \frac{1}{2}\Bigl[\ln(x-a)-\ln(b-x)\Bigr].
\]
Differentiating with respect to \(x\),
\[
\frac{w’}{w} = \frac{1}{2}\left(\frac{1}{x-a}+\frac{1}{b-x}\right)
= \frac{1}{2}\cdot\frac{(b-x)+(x-a)}{(x-a)(b-x)}
= \frac{b-a}{2(x-a)(b-x)}.
\]
Hence,
\[
\frac{dw}{dx} = \frac{w(b-a)}{2(x-a)(b-x)}.
\]
Step 3. Substitute into the derivative formula:
Combining the results, we obtain
\[
\frac{dy}{dx} = 2\cdot\frac{b-x}{b-a}\cdot\frac{w(b-a)}{2(x-a)(b-x)}
= \frac{w}{x-a}.
\]
Since
\[
w = \sqrt{\frac{x-a}{b-x}},
\]
we have
\[
\frac{dy}{dx} = \frac{1}{x-a}\sqrt{\frac{x-a}{b-x}}
= \frac{1}{\sqrt{(x-a)(b-x)}}.
\]
Note that for \(a < x < b\), we have \(x-b < 0\) and therefore
\[
(x-a)(x-b) = -\,(x-a)(b-x).
\]
Squaring the derivative, we get
\[
\left(\frac{dy}{dx}\right)^2 = \frac{1}{(x-a)(b-x)}
= -\frac{1}{(x-a)(x-b)}.
\]
Rearranging yields the required result:
\[
\left(\frac{dy}{dx}\right)^2 + \frac{1}{(x-a)(x-b)} = 0.
\]
Final Answer:
\[
\left(\frac{dy}{dx}\right)^2 + \frac{1}{(x-a)(x-b)} = 0.
\]
Question 11:
If
\[
\tan y=\frac{2t}{1-t^2}\quad\text{and}\quad \sin x=\frac{2t}{1+t^2},
\]
prove that
\[
\frac{dy}{dx}=1.
\]
Hint: Notice that \(\tan y=\frac{2t}{1-t^2}\) implies \(y=2\tan^{-1}t\) and \(\sin x=\frac{2t}{1+t^2}\) implies \(x=2\tan^{-1}t\).
Hint: Notice that \(\tan y=\frac{2t}{1-t^2}\) implies \(y=2\tan^{-1}t\) and \(\sin x=\frac{2t}{1+t^2}\) implies \(x=2\tan^{-1}t\).
Solution:
Given
\[
\tan y = \frac{2t}{1-t^2},
\]
recall the trigonometric identity
\[
\tan\bigl(2\tan^{-1}t\bigr)=\frac{2t}{1-t^2},
\]
which implies that, for appropriate domain,
\[
y=2\tan^{-1}t.
\]
Similarly, we are given
\[
\sin x = \frac{2t}{1+t^2}.
\]
It is known that
\[
\sin\bigl(2\tan^{-1}t\bigr)=\frac{2t}{1+t^2},
\]
so that
\[
x=2\tan^{-1}t.
\]
Therefore, we have:
\[
y=2\tan^{-1}t \quad \text{and} \quad x=2\tan^{-1}t,
\]
which directly shows that
\[
y=x.
\]
Differentiating with respect to \(x\), we obtain
\[
\frac{dy}{dx}=1.
\]
Final Answer:
\[
\frac{dy}{dx}=1.
\]
Question 12:
If
\[
y = a^{t+\frac{1}{t}} \quad \text{and} \quad x = \Bigl(t+\frac{1}{t}\Bigr)^a, \quad a>0,
\]
find \(\frac{dy}{dx}\).
Solution:
We are given
\[
y = a^{t+\frac{1}{t}},
\]
and we differentiate \(y\) with respect to \(t\). Using the formula
\[
\frac{d}{dt}\Bigl(a^{f(t)}\Bigr) = a^{f(t)}\,\text{log}\,a\, f'(t),
\]
where
\[
f(t)=t+\frac{1}{t}, \quad \text{so} \quad f'(t)=1-\frac{1}{t^2},
\]
we obtain
\[
\frac{dy}{dt}=a^{t+\frac{1}{t}}\,\text{log}\,a\,\left(1-\frac{1}{t^2}\right).
\]
Next, we differentiate
\[
x = \Bigl(t+\frac{1}{t}\Bigr)^a.
\]
Let
\[
h(t)=t+\frac{1}{t},
\]
so that \(x=[h(t)]^a\). Then, by the chain rule,
\[
\frac{dx}{dt}=a\,[h(t)]^{a-1}\, h'(t),
\]
and since
\[
h'(t)=1-\frac{1}{t^2},
\]
it follows that
\[
\frac{dx}{dt}=a\left(t+\frac{1}{t}\right)^{a-1}\left(1-\frac{1}{t^2}\right).
\]
Now, using the chain rule to obtain \(\frac{dy}{dx}\),
\[
\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}
=\frac{a^{t+\frac{1}{t}}\,\text{log}\,a\,\left(1-\frac{1}{t^2}\right)}
{a\left(t+\frac{1}{t}\right)^{a-1}\left(1-\frac{1}{t^2}\right)}.
\]
Cancel the common factor \(\left(1-\frac{1}{t^2}\right)\) (assuming \(t\neq 0\)):
\[
\frac{dy}{dx}=\frac{a^{t+\frac{1}{t}}\,\text{log}\,a}{a\left(t+\frac{1}{t}\right)^{a-1}}.
\]
Final Answer:
\[
\frac{dy}{dx} = \frac{a^{t+\frac{1}{t}}\,\text{log}\,a}{a\left(t+\frac{1}{t}\right)^{a-1}}.
\]
Question 13:
If
\[
y=\sin^{-1}\!\left(\frac{1}{\sqrt{1+x^2}}\right)+\tan^{-1}\!\left(\frac{\sqrt{1+x^2}-1}{x}\right),
\]
find \(\frac{dy}{dx}\).
Solution:
We write
\[
y = A + B,
\]
where
\[
A=\sin^{-1}\!\left(\frac{1}{\sqrt{1+x^2}}\right)
\quad\text{and}\quad
B=\tan^{-1}\!\left(\frac{\sqrt{1+x^2}-1}{x}\right).
\]
Step 1. Differentiate \(A\):
Let
\[
u(x)=\frac{1}{\sqrt{1+x^2}}=(1+x^2)^{-1/2}.
\]
Then,
\[
A=\sin^{-1}\bigl(u(x)\bigr) \quad \Rightarrow \quad A’=\frac{u'(x)}{\sqrt{1-u(x)^2}}.
\]
Differentiate \(u(x)\):
\[
u'(x)=-\frac{1}{2}(1+x^2)^{-3/2}\cdot 2x=-\frac{x}{(1+x^2)^{3/2}}.
\]
Note that
\[
u(x)^2=\frac{1}{1+x^2}\quad\text{so that}\quad 1-u(x)^2=\frac{x^2}{1+x^2},
\]
and hence
\[
\sqrt{1-u(x)^2}=\frac{|x|}{\sqrt{1+x^2}}.
\]
Assuming \(x>0\) (a similar argument holds for \(x<0\) with appropriate absolute values), we have
\[
\sqrt{1-u(x)^2}=\frac{x}{\sqrt{1+x^2}}.
\]
Therefore,
\[
A'=\frac{-\frac{x}{(1+x^2)^{3/2}}}{\frac{x}{\sqrt{1+x^2}}}
= -\frac{1}{1+x^2}.
\]
Step 2. Differentiate \(B\):
Let
\[
v(x)=\frac{\sqrt{1+x^2}-1}{x} \quad \text{so that} \quad B=\tan^{-1}\bigl(v(x)\bigr).
\]
Then,
\[
B’=\frac{v'(x)}{1+v(x)^2}.
\]
Instead of performing tedious algebra, we note the following trigonometric fact:
It is known that
\[
\tan^{-1}\!\left(\frac{\sqrt{1+x^2}-1}{x}\right)+\cot^{-1}\!\left(\frac{\sqrt{1+x^2}-1}{x}\right)
=\frac{\pi}{2},
\]
and in a previous result, it was shown that
\[
\frac{d}{dx}\left[\cot^{-1}\!\left(\frac{\sqrt{1+x^2}-1}{x}\right)\right]
= -\frac{1}{2(1+x^2)}.
\]
Therefore, differentiating the identity gives
\[
B’ = -\left[-\frac{1}{2(1+x^2)}\right] = \frac{1}{2(1+x^2)}.
\]
Step 3. Combine the derivatives:
Now,
\[
\frac{dy}{dx}=A’+B’=-\frac{1}{1+x^2}+\frac{1}{2(1+x^2)}
=-\frac{2}{2(1+x^2)}+\frac{1}{2(1+x^2)}
= -\frac{1}{2(1+x^2)}.
\]
Final Answer:
\[
\frac{dy}{dx}=-\frac{1}{2(1+x^2)}.
\]
Question 14:
If
\[
y\sqrt{1-x^2}+x\sqrt{1-y^2}=c,
\]
prove that
\[
\frac{dy}{dx}=-\sqrt{\frac{1-y^2}{1-x^2}}.
\]
Hint: Let \(x=\sin\theta\) and \(y=\sin\phi\). Then \(\sqrt{1-x^2}=\cos\theta\) and \(\sqrt{1-y^2}=\cos\phi\), so the given equation becomes \(\sin\phi\cos\theta+\cos\phi\sin\theta=c\), which can be written as \(\sin(\theta+\phi)=c\) and hence \(\theta+\phi=\sin^{-1}c\); differentiate with respect to \(x\) to obtain the result.
Hint: Let \(x=\sin\theta\) and \(y=\sin\phi\). Then \(\sqrt{1-x^2}=\cos\theta\) and \(\sqrt{1-y^2}=\cos\phi\), so the given equation becomes \(\sin\phi\cos\theta+\cos\phi\sin\theta=c\), which can be written as \(\sin(\theta+\phi)=c\) and hence \(\theta+\phi=\sin^{-1}c\); differentiate with respect to \(x\) to obtain the result.
Solution:
Let
\[
x=\sin\theta \quad \text{and} \quad y=\sin\phi.
\]
Then
\[
\sqrt{1-x^2}=\cos\theta \quad \text{and} \quad \sqrt{1-y^2}=\cos\phi.
\]
The given equation
\[
y\sqrt{1-x^2}+x\sqrt{1-y^2}=c
\]
becomes
\[
\sin\phi\,\cos\theta+\sin\theta\,\cos\phi = \sin(\theta+\phi)=c.
\]
Thus, \(\theta+\phi\) is a constant:
\[
\theta+\phi = \sin^{-1}c.
\]
Differentiating both sides with respect to \(x\) and noting that \(\sin^{-1}c\) is constant, we have
\[
\frac{d\theta}{dx}+\frac{d\phi}{dx}=0 \quad\Rightarrow\quad \frac{d\phi}{dx}=-\frac{d\theta}{dx}.
\]
Since
\[
x=\sin\theta \quad \Rightarrow \quad \frac{dx}{dx}=\cos\theta\,\frac{d\theta}{dx}=1,
\]
it follows that
\[
\frac{d\theta}{dx}=\frac{1}{\cos\theta}.
\]
Now, differentiating \(y=\sin\phi\) with respect to \(x\) gives
\[
\frac{dy}{dx}=\cos\phi\,\frac{d\phi}{dx} = \cos\phi\left(-\frac{1}{\cos\theta}\right)
= -\frac{\cos\phi}{\cos\theta}.
\]
Noting that \(\cos\phi=\sqrt{1-\sin^2\phi}=\sqrt{1-y^2}\) and \(\cos\theta=\sqrt{1-\sin^2\theta}=\sqrt{1-x^2}\), we deduce
\[
\frac{dy}{dx}=-\frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}
= -\sqrt{\frac{1-y^2}{1-x^2}}.
\]
Final Answer:
\[
\frac{dy}{dx}=-\sqrt{\frac{1-y^2}{1-x^2}}.
\]
Question:
15(i) Differentiate the following function with respect to \(x\):
\[
\tan\left(x^x\right)
\]
Solution:
We start with the function
\[
f(x)=\tan\left(x^x\right).
\]
Using the chain rule,
\[
f'(x)=\sec^2\left(x^x\right) \cdot \frac{d}{dx}\left(x^x\right).
\]
To differentiate \(x^x\), express it in exponential form:
\[
x^x=e^{x\,\text{log}\, x}.
\]
Differentiating, we have
\[
\frac{d}{dx}\left(e^{x\,\text{log}\, x}\right)=e^{x\,\text{log}\, x}\cdot\frac{d}{dx}\left(x\,\text{log}\, x\right).
\]
Now, differentiate \(x\,\text{log}\, x\):
\[
\frac{d}{dx}\left(x\,\text{log}\, x\right)=\text{log}\, x+1.
\]
Thus,
\[
\frac{d}{dx}\left(x^x\right)=x^x\left(\text{log}\, x+1\right).
\]
Therefore, the derivative of \(f(x)\) is
\[
f'(x)=\sec^2\left(x^x\right)x^x\left(\text{log}\, x+1\right).
\]
Final Answer:
\[
\sec^2\left(x^x\right)x^x\left(\text{log}\, x+1\right)
\]
Question:
15(ii) Differentiate the following function with respect to \(x\):
\[
(5x)^{3\cos 2x}
\]
Solution:
Let
\[
y=(5x)^{3\cos 2x}.
\]
Taking full \(\text{log}\) on both sides, we have
\[
\text{log}\,y=3\cos 2x\,\text{log}(5x).
\]
Differentiating both sides with respect to \(x\) using the chain rule, we obtain
\[
\frac{1}{y}\frac{dy}{dx}=\frac{d}{dx}\Bigl[3\cos 2x\,\text{log}(5x)\Bigr].
\]
Using the product rule on the right-hand side, we differentiate:
\[
\frac{d}{dx}\Bigl[3\cos 2x\,\text{log}(5x)\Bigr]=3\frac{d}{dx}\bigl[\cos 2x\bigr]\,\text{log}(5x)+3\cos 2x\,\frac{d}{dx}\bigl[\text{log}(5x)\bigr].
\]
Now, compute each derivative:
\[
\frac{d}{dx}\bigl[\cos 2x\bigr]=-2\sin 2x,
\]
and
\[
\frac{d}{dx}\bigl[\text{log}(5x)\bigr]=\frac{1}{x},
\]
since \(\text{log}(5x)=\text{log}5+\text{log}x\) and the derivative of \(\text{log}5\) is zero.
Hence,
\[
\frac{d}{dx}\Bigl[3\cos 2x\,\text{log}(5x)\Bigr]=3(-2\sin 2x)\,\text{log}(5x)+\frac{3\cos 2x}{x}.
\]
This simplifies to:
\[
\frac{d}{dx}\Bigl[3\cos 2x\,\text{log}(5x)\Bigr]=-\;6\sin 2x\,\text{log}(5x)+\frac{3\cos 2x}{x}.
\]
Thus,
\[
\frac{1}{y}\frac{dy}{dx}=-6\sin 2x\,\text{log}(5x)+\frac{3\cos 2x}{x}.
\]
Multiplying both sides by \(y=(5x)^{3\cos 2x}\), we obtain:
\[
\frac{dy}{dx}=(5x)^{3\cos 2x}\left[\frac{3\cos 2x}{x}-6\sin 2x\,\text{log}(5x)\right].
\]
Final Answer:
\[
(5x)^{3\cos 2x}\left[\frac{3\cos 2x}{x}-6\sin 2x\,\text{log}(5x)\right]
\]
Question:
15(iii) Differentiate the following function with respect to \(x\):
\[
(\sin x-\cos x)^{\sin x-\cos x}
\]
Solution:
Let
\[
y=(\sin x-\cos x)^{\sin x-\cos x}.
\]
Taking the full \(\text{log}\) on both sides, we obtain:
\[
\text{log}\,y=(\sin x-\cos x)\,\text{log}(\sin x-\cos x).
\]
Differentiating both sides with respect to \(x\) using the chain and product rules:
\[
\frac{1}{y}\frac{dy}{dx}=\frac{d}{dx}\Bigl[(\sin x-\cos x)\,\text{log}(\sin x-\cos x)\Bigr].
\]
Let
\[
u=\sin x-\cos x.
\]
Then,
\[
\frac{du}{dx}=\cos x+\sin x.
\]
Notice that:
\[
\frac{d}{dx}\left[u\,\text{log}\,u\right]=\frac{du}{dx}\,\text{log}\,u+u\cdot\frac{1}{u}\frac{du}{dx}=\frac{du}{dx}\left(\text{log}\,u+1\right).
\]
Hence,
\[
\frac{1}{y}\frac{dy}{dx}=(\cos x+\sin x)\left(\text{log}(\sin x-\cos x)+1\right).
\]
Multiplying both sides by \(y\), we have:
\[
\frac{dy}{dx}=(\sin x-\cos x)^{\sin x-\cos x}(\cos x+\sin x)\left(\text{log}(\sin x-\cos x)+1\right).
\]
Final Answer:
\[
(\sin x-\cos x)^{\sin x-\cos x}(\cos x+\sin x)\left(\text{log}(\sin x-\cos x)+1\right)
\]
Question:
15(iv) Differentiate the following function with respect to \(x\):
\[
\left(x+\frac{1}{x}\right)^{x}+x^{\left(1+\frac{1}{x}\right)}
\]
Solution:
Let
\[
f(x)=\left(x+\frac{1}{x}\right)^{x}+x^{\left(1+\frac{1}{x}\right)}.
\]
We differentiate \(f(x)\) by differentiating each term separately.
First Term:
Let \[ y_1=\left(x+\frac{1}{x}\right)^{x}. \] Taking the full \(\text{log}\) on both sides, we have \[ \text{log}\,y_1=x\,\text{log}\left(x+\frac{1}{x}\right). \] Differentiating both sides with respect to \(x\): \[ \frac{1}{y_1}\frac{dy_1}{dx}=\text{log}\left(x+\frac{1}{x}\right)+x\cdot\frac{1}{\left(x+\frac{1}{x}\right)}\frac{d}{dx}\left(x+\frac{1}{x}\right). \] Now, \[ \frac{d}{dx}\left(x+\frac{1}{x}\right)=1-\frac{1}{x^2}. \] Thus, \[ \frac{1}{y_1}\frac{dy_1}{dx}=\text{log}\left(x+\frac{1}{x}\right)+\frac{x\left(1-\frac{1}{x^2}\right)}{\left(x+\frac{1}{x}\right)}. \] Simplify the fraction: \[ x\left(1-\frac{1}{x^2}\right)=x-\frac{1}{x}, \quad \text{and} \quad x+\frac{1}{x}=\frac{x^2+1}{x}. \] Therefore, \[ \frac{x-\frac{1}{x}}{\frac{x^2+1}{x}}=\frac{x^2-1}{x^2+1}. \] Hence, \[ \frac{dy_1}{dx}=y_1\left[\text{log}\left(x+\frac{1}{x}\right)+\frac{x^2-1}{x^2+1}\right], \] or, \[ \frac{dy_1}{dx}=\left(x+\frac{1}{x}\right)^{x}\left[\text{log}\left(x+\frac{1}{x}\right)+\frac{x^2-1}{x^2+1}\right]. \]
Second Term:
Let \[ y_2=x^{\left(1+\frac{1}{x}\right)}. \] Taking the full \(\text{log}\) on both sides: \[ \text{log}\,y_2=\left(1+\frac{1}{x}\right)\text{log}\,x. \] Differentiating with respect to \(x\): \[ \frac{1}{y_2}\frac{dy_2}{dx}=\frac{d}{dx}\left[\text{log}\,x+\frac{\text{log}\,x}{x}\right]. \] Here, \[ \frac{d}{dx}\left(\text{log}\,x\right)=\frac{1}{x}, \] and \[ \frac{d}{dx}\left(\frac{\text{log}\,x}{x}\right)=\frac{1}{x^2}-\frac{\text{log}\,x}{x^2}. \] Therefore, \[ \frac{1}{y_2}\frac{dy_2}{dx}=\frac{1}{x}+\frac{1}{x^2}-\frac{\text{log}\,x}{x^2}, \] and hence, \[ \frac{dy_2}{dx}=x^{\left(1+\frac{1}{x}\right)}\left[\frac{1}{x}+\frac{1}{x^2}-\frac{\text{log}\,x}{x^2}\right]. \]
Finally, combining both derivatives, we obtain \[ f'(x)=\left(x+\frac{1}{x}\right)^{x}\left[\text{log}\left(x+\frac{1}{x}\right)+\frac{x^2-1}{x^2+1}\right]+x^{\left(1+\frac{1}{x}\right)}\left[\frac{1}{x}+\frac{1}{x^2}-\frac{\text{log}\,x}{x^2}\right]. \]
First Term:
Let \[ y_1=\left(x+\frac{1}{x}\right)^{x}. \] Taking the full \(\text{log}\) on both sides, we have \[ \text{log}\,y_1=x\,\text{log}\left(x+\frac{1}{x}\right). \] Differentiating both sides with respect to \(x\): \[ \frac{1}{y_1}\frac{dy_1}{dx}=\text{log}\left(x+\frac{1}{x}\right)+x\cdot\frac{1}{\left(x+\frac{1}{x}\right)}\frac{d}{dx}\left(x+\frac{1}{x}\right). \] Now, \[ \frac{d}{dx}\left(x+\frac{1}{x}\right)=1-\frac{1}{x^2}. \] Thus, \[ \frac{1}{y_1}\frac{dy_1}{dx}=\text{log}\left(x+\frac{1}{x}\right)+\frac{x\left(1-\frac{1}{x^2}\right)}{\left(x+\frac{1}{x}\right)}. \] Simplify the fraction: \[ x\left(1-\frac{1}{x^2}\right)=x-\frac{1}{x}, \quad \text{and} \quad x+\frac{1}{x}=\frac{x^2+1}{x}. \] Therefore, \[ \frac{x-\frac{1}{x}}{\frac{x^2+1}{x}}=\frac{x^2-1}{x^2+1}. \] Hence, \[ \frac{dy_1}{dx}=y_1\left[\text{log}\left(x+\frac{1}{x}\right)+\frac{x^2-1}{x^2+1}\right], \] or, \[ \frac{dy_1}{dx}=\left(x+\frac{1}{x}\right)^{x}\left[\text{log}\left(x+\frac{1}{x}\right)+\frac{x^2-1}{x^2+1}\right]. \]
Second Term:
Let \[ y_2=x^{\left(1+\frac{1}{x}\right)}. \] Taking the full \(\text{log}\) on both sides: \[ \text{log}\,y_2=\left(1+\frac{1}{x}\right)\text{log}\,x. \] Differentiating with respect to \(x\): \[ \frac{1}{y_2}\frac{dy_2}{dx}=\frac{d}{dx}\left[\text{log}\,x+\frac{\text{log}\,x}{x}\right]. \] Here, \[ \frac{d}{dx}\left(\text{log}\,x\right)=\frac{1}{x}, \] and \[ \frac{d}{dx}\left(\frac{\text{log}\,x}{x}\right)=\frac{1}{x^2}-\frac{\text{log}\,x}{x^2}. \] Therefore, \[ \frac{1}{y_2}\frac{dy_2}{dx}=\frac{1}{x}+\frac{1}{x^2}-\frac{\text{log}\,x}{x^2}, \] and hence, \[ \frac{dy_2}{dx}=x^{\left(1+\frac{1}{x}\right)}\left[\frac{1}{x}+\frac{1}{x^2}-\frac{\text{log}\,x}{x^2}\right]. \]
Finally, combining both derivatives, we obtain \[ f'(x)=\left(x+\frac{1}{x}\right)^{x}\left[\text{log}\left(x+\frac{1}{x}\right)+\frac{x^2-1}{x^2+1}\right]+x^{\left(1+\frac{1}{x}\right)}\left[\frac{1}{x}+\frac{1}{x^2}-\frac{\text{log}\,x}{x^2}\right]. \]
Final Answer:
\[
\left(x+\frac{1}{x}\right)^{x}\left[\text{log}\left(x+\frac{1}{x}\right)+\frac{x^2-1}{x^2+1}\right]+x^{\left(1+\frac{1}{x}\right)}\left[\frac{1}{x}+\frac{1}{x^2}-\frac{\text{log}\,x}{x^2}\right]
\]
Question:
16. If
\[
y=(\cos x)^{(\cos x)^{(\cos x)\cdots \infty}},
\]
prove that
\[
\frac{dy}{dx}=-\frac{y^{2}\tan x}{1-y\,\text{log}(\cos x)}.
\]
Solution:
Since the infinite exponentiation defines a self-referential expression, we have
\[
y=(\cos x)^y.
\]
Taking the full \(\text{log}\) on both sides:
\[
\text{log}\,y = y\,\text{log}(\cos x).
\]
Differentiate both sides with respect to \(x\). On the left-hand side, using the chain rule:
\[
\frac{1}{y}\frac{dy}{dx}.
\]
On the right-hand side, applying the product rule:
\[
\frac{d}{dx}\Bigl[y\,\text{log}(\cos x)\Bigr]=\frac{dy}{dx}\,\text{log}(\cos x) + y\,\frac{d}{dx}\Bigl[\text{log}(\cos x)\Bigr].
\]
Note that
\[
\frac{d}{dx}\Bigl[\text{log}(\cos x)\Bigr]=\frac{-\sin x}{\cos x}=-\tan x.
\]
Therefore, the differentiated equation becomes:
\[
\frac{1}{y}\frac{dy}{dx}=\frac{dy}{dx}\,\text{log}(\cos x) – y\,\tan x.
\]
Rearranging the terms to isolate \(\frac{dy}{dx}\):
\[
\frac{dy}{dx}\left(\frac{1}{y}-\text{log}(\cos x)\right)=-y\,\tan x.
\]
Hence,
\[
\frac{dy}{dx}=-y\,\tan x \cdot \frac{1}{\frac{1}{y}-\text{log}(\cos x)}
= -y\,\tan x \cdot \frac{y}{1-y\,\text{log}(\cos x)}.
\]
Simplifying, we obtain:
\[
\frac{dy}{dx}=-\frac{y^{2}\tan x}{1-y\,\text{log}(\cos x)}.
\]
Final Answer:
\[
\frac{dy}{dx}=-\frac{y^{2}\tan x}{1-y\,\text{log}(\cos x)}
\]
Question 17:
If
\[
\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}=6,
\]
prove that
\[
\frac{dy}{dx}=\frac{y}{x}.
\]
Hint: From the given equation, observe that \(\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}=6 \Rightarrow x+y=6\sqrt{x}\sqrt{y}\). Taking logarithms on both sides simplifies the differentiation.
Hint: From the given equation, observe that \(\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}=6 \Rightarrow x+y=6\sqrt{x}\sqrt{y}\). Taking logarithms on both sides simplifies the differentiation.
Solution:
We start with
\[
\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}=6.
\]
Multiply both sides by \(\sqrt{x}\sqrt{y}\) to eliminate the fractional radicals:
\[
\sqrt{x}\sqrt{y}\left(\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}\right)=6\sqrt{x}\sqrt{y}.
\]
Notice that
\[
\sqrt{x}\sqrt{y}\sqrt{\frac{x}{y}} = x \quad \text{and} \quad \sqrt{x}\sqrt{y}\sqrt{\frac{y}{x}} = y.
\]
Thus, the equation becomes
\[
x+y=6\sqrt{xy}.
\]
Taking natural logarithms on both sides gives
\[
\ln(x+y)=\ln6+\frac{1}{2}\ln(xy).
\]
Differentiate both sides with respect to \(x\). The left-hand side, by the chain rule, is
\[
\frac{d}{dx}\ln(x+y)=\frac{1}{x+y}\left(1+\frac{dy}{dx}\right).
\]
The right-hand side differentiates as
\[
\frac{d}{dx}\left[\ln6+\frac{1}{2}\ln x+\frac{1}{2}\ln y\right]
= \frac{1}{2x}+\frac{1}{2y}\frac{dy}{dx},
\]
since \(\ln6\) is constant.
Equate the two derivatives:
\[
\frac{1}{x+y}\left(1+\frac{dy}{dx}\right)=\frac{1}{2x}+\frac{1}{2y}\frac{dy}{dx}.
\]
Multiply both sides by \(2(x+y)\) to clear the fractions:
\[
2\left(1+\frac{dy}{dx}\right)=\frac{x+y}{x}+\frac{x+y}{y}\frac{dy}{dx}.
\]
Rearranging, we have
\[
2+2\frac{dy}{dx}=\frac{x+y}{x}+\frac{x+y}{y}\frac{dy}{dx}.
\]
Bring the terms involving \(\frac{dy}{dx}\) together:
\[
2\frac{dy}{dx}-\frac{x+y}{y}\frac{dy}{dx} = \frac{x+y}{x}-2.
\]
Factor out \(\frac{dy}{dx}\) on the left:
\[
\frac{dy}{dx}\left(2-\frac{x+y}{y}\right)=\frac{x+y}{x}-2.
\]
Now, simplify the factors:
\[
2-\frac{x+y}{y}=\frac{2y-(x+y)}{y}=\frac{y-x}{y},
\]
and
\[
\frac{x+y}{x}-2=\frac{x+y-2x}{x}=\frac{y-x}{x}.
\]
Therefore, the equation becomes
\[
\frac{dy}{dx}\left(\frac{y-x}{y}\right)=\frac{y-x}{x}.
\]
Cancel the common factor \((y-x)\) (assuming \(y\ne x\)):
\[
\frac{dy}{dx}\cdot\frac{1}{y}=\frac{1}{x}.
\]
Multiplying both sides by \(y\) yields
\[
\frac{dy}{dx}=\frac{y}{x}.
\]
Final Answer:
\[
\frac{dy}{dx}=\frac{y}{x}.
\]
Question:
18(i). Find the second derivative of
\[
y=\tan^{2}(3x-2).
\]
Solution:
We start with
\[
y=\tan^{2}(3x-2).
\]
Differentiate using the chain rule. First, compute the first derivative:
\[
\frac{dy}{dx}=2\tan(3x-2)\cdot\frac{d}{dx}\left[\tan(3x-2)\right].
\]
Since
\[
\frac{d}{dx}\left[\tan(3x-2)\right]=3\sec^{2}(3x-2),
\]
it follows that
\[
\frac{dy}{dx}=2\tan(3x-2)\cdot 3\sec^{2}(3x-2)=6\tan(3x-2)\sec^{2}(3x-2).
\]
Next, differentiate \( y’ = 6\tan(3x-2)\sec^{2}(3x-2) \) with respect to \(x\):
\[
\frac{d^{2}y}{dx^{2}}=6\frac{d}{dx}\left[\tan(3x-2)\sec^{2}(3x-2)\right].
\]
Applying the product rule:
\[
\frac{d}{dx}\left[\tan(3x-2)\sec^{2}(3x-2)\right]
= \frac{d}{dx}\left[\tan(3x-2)\right]\cdot\sec^{2}(3x-2)
+ \tan(3x-2)\cdot\frac{d}{dx}\left[\sec^{2}(3x-2)\right].
\]
We already have:
\[
\frac{d}{dx}\left[\tan(3x-2)\right]=3\sec^{2}(3x-2).
\]
Thus, the first term is:
\[
3\sec^{2}(3x-2)\cdot\sec^{2}(3x-2)=3\sec^{4}(3x-2).
\]
For the second term, recall that
\[
\frac{d}{dx}\left[\sec^{2}(3x-2)\right]
=2\sec^{2}(3x-2)\tan(3x-2)\cdot\frac{d}{dx}(3x-2)
=2\sec^{2}(3x-2)\tan(3x-2)\cdot3
=6\sec^{2}(3x-2)\tan(3x-2).
\]
Hence, the second term becomes:
\[
\tan(3x-2)\cdot6\sec^{2}(3x-2)\tan(3x-2)
=6\tan^{2}(3x-2)\sec^{2}(3x-2).
\]
Combining these, we have:
\[
\frac{d}{dx}\left[\tan(3x-2)\sec^{2}(3x-2)\right]
=3\sec^{4}(3x-2)+6\tan^{2}(3x-2)\sec^{2}(3x-2).
\]
Thus, the second derivative is:
\[
\frac{d^{2}y}{dx^{2}}
=6\left[3\sec^{4}(3x-2)+6\tan^{2}(3x-2)\sec^{2}(3x-2)\right].
\]
Simplifying further:
\[
\frac{d^{2}y}{dx^{2}}
=18\sec^{4}(3x-2)+36\tan^{2}(3x-2)\sec^{2}(3x-2).
\]
Final Answer:
\[
\frac{d^{2}y}{dx^{2}}
=36\tan^{2}(3x-2)\sec^{2}(3x-2)+18\sec^{4}(3x-2).
\]
Question:
18(ii). Find the second derivative of
\[
y=\frac{x^{2}+2 x-1}{x^{2}-3 x+2}.
\]
Solution:
First, note that the denominator factors as
\[
x^{2}-3x+2 = (x-1)(x-2).
\]
It is given (or found by partial fractions) that
\[
\frac{x^{2}+2 x-1}{x^{2}-3 x+2} = 1-\frac{2}{x-1}+\frac{7}{x-2}.
\]
Denote the function by:
\[
f(x)=1-\frac{2}{x-1}+\frac{7}{x-2}.
\]
**Step 1.** Find the first derivative \( f'(x) \).
The derivative of the constant 1 is 0.
For the term \( -\frac{2}{x-1} \):
\[
\frac{d}{dx}\left(-\frac{2}{x-1}\right)
= -2 \cdot \frac{d}{dx}\left((x-1)^{-1}\right)
= -2 \cdot \left(-\frac{1}{(x-1)^{2}}\right)
= \frac{2}{(x-1)^{2}}.
\]
For the term \( \frac{7}{x-2} \):
\[
\frac{d}{dx}\left(\frac{7}{x-2}\right)
= 7 \cdot \frac{d}{dx}\left((x-2)^{-1}\right)
= 7 \cdot \left(-\frac{1}{(x-2)^{2}}\right)
= -\frac{7}{(x-2)^{2}}.
\]
Thus, the first derivative is:
\[
f'(x)=\frac{2}{(x-1)^{2}}-\frac{7}{(x-2)^{2}}.
\]
**Step 2.** Find the second derivative \( f”(x) \).
Differentiate each term of \( f'(x) \) with respect to \(x\).
For the term \( \frac{2}{(x-1)^{2}} \):
\[
\frac{d}{dx}\left(\frac{2}{(x-1)^{2}}\right)
= 2 \cdot \frac{d}{dx}\left((x-1)^{-2}\right)
= 2 \cdot \left(-2(x-1)^{-3}\right)
= -\frac{4}{(x-1)^{3}}.
\]
For the term \( -\frac{7}{(x-2)^{2}} \):
\[
\frac{d}{dx}\left(-\frac{7}{(x-2)^{2}}\right)
= -7 \cdot \frac{d}{dx}\left((x-2)^{-2}\right)
= -7 \cdot \left(-2(x-2)^{-3}\right)
= \frac{14}{(x-2)^{3}}.
\]
Therefore, the second derivative is:
\[
f”(x)=-\frac{4}{(x-1)^{3}}+\frac{14}{(x-2)^{3}}.
\]
Final Answer:
\[
\frac{d^{2}y}{dx^{2}}=-\frac{4}{(x-1)^{3}}+\frac{14}{(x-2)^{3}}.
\]
Question:
20. If
\[
y=\cos\left(3\cos^{-1}x\right),
\]
then prove that
\[
\frac{d^{2}y}{dx^{2}}=24x.
\]
Solution:
We begin with the function
\[
y=\cos\left(3\cos^{-1} x\right).
\]
Let \(\theta=\cos^{-1}x\) so that \(x=\cos\theta\). Then, using the multiple-angle formula for cosine,
\[
\cos 3\theta=4\cos^3\theta-3\cos\theta,
\]
it follows that
\[
y=4\cos^3\theta-3\cos\theta=4x^3-3x.
\]
Now, differentiate \( y=4x^3-3x \) with respect to \(x\) to obtain the first derivative:
\[
\frac{dy}{dx}=\frac{d}{dx}\left(4x^3-3x\right)=12x^2-3.
\]
Next, differentiate the first derivative to compute the second derivative:
\[
\frac{d^2y}{dx^2}=\frac{d}{dx}\left(12x^2-3\right)=24x.
\]
Thus, we have shown that the second derivative of the function is
\[
\frac{d^2y}{dx^2}=24x.
\]
Final Answer:
\[
\frac{d^{2}y}{dx^{2}}=24x.
\]
Question:
21. If
\[
\sin(x+y)=ky,
\]
prove that
\[
y_{2}+y\left(1+y_{1}\right)^{3}=0,
\]
where \(y_{1}=\frac{dy}{dx}\) and \(y_{2}=\frac{d^{2}y}{dx^{2}}\).
Solution:
We start with the equation:
\[
\sin(x+y)=ky.
\]
Step 1. Differentiate both sides with respect to \(x\).
Differentiating the left-hand side using the chain rule, we have:
\[
\frac{d}{dx}\left[\sin(x+y)\right]
= \cos(x+y)\cdot\frac{d}{dx}(x+y)
= \cos(x+y)\Bigl(1+\frac{dy}{dx}\Bigr)
= \cos(x+y)\Bigl(1+y_{1}\Bigr).
\]
Differentiating the right-hand side:
\[
\frac{d}{dx}(ky)= k\,\frac{dy}{dx} = k\,y_{1}.
\]
Equate the two derivatives:
\[
\cos(x+y)(1+y_{1})= k\,y_{1}. \tag{1}
\]
Step 2. Differentiate equation \((1)\) with respect to \(x\) to obtain the second derivative.
Differentiating the left-hand side using the product rule:
\[
\frac{d}{dx}\Bigl[\cos(x+y)(1+y_{1})\Bigr]
= \frac{d}{dx}\bigl[\cos(x+y)\bigr](1+y_{1})
+ \cos(x+y)\frac{d}{dx}(1+y_{1}).
\]
Compute each derivative separately:
– For \(\cos(x+y)\):
\[
\frac{d}{dx}\bigl[\cos(x+y)\bigr]
= -\sin(x+y)\cdot\frac{d}{dx}(x+y)
= -\sin(x+y)(1+y_{1}).
\]
– For \(1+y_{1}\):
\[
\frac{d}{dx}(1+y_{1})=y_{2}.
\]
Thus, the derivative of the left-hand side becomes:
\[
-\sin(x+y)(1+y_{1})^{2}+\cos(x+y)y_{2}. \tag{2}
\]
The derivative of the right-hand side of \((1)\) is:
\[
\frac{d}{dx}\bigl[k\,y_{1}\bigr]=k\,y_{2}. \tag{3}
\]
Equate equations \((2)\) and \((3)\):
\[
-\sin(x+y)(1+y_{1})^{2}+\cos(x+y)y_{2}= k\,y_{2}. \tag{4}
\]
Rearranging \((4)\), we obtain:
\[
\cos(x+y)y_{2}-k\,y_{2}= \sin(x+y)(1+y_{1})^{2},
\]
or equivalently,
\[
y_{2}\Bigl[\cos(x+y)-k\Bigr]= \sin(x+y)(1+y_{1})^{2}. \tag{5}
\]
Step 3. Eliminate the trigonometric functions using the original relation.
From the original equation, we have:
\[
\sin(x+y)= ky. \tag{6}
\]
Also, from equation \((1)\),
\[
\cos(x+y)(1+y_{1})= k\,y_{1} \quad\Longrightarrow\quad \cos(x+y)=\frac{k\,y_{1}}{1+y_{1}}. \tag{7}
\]
Substitute \((7)\) into \((5)\):
\[
y_{2}\left[\frac{k\,y_{1}}{1+y_{1}}-k\right]
= \sin(x+y)(1+y_{1})^{2}.
\]
Simplify the bracket on the left:
\[
\frac{k\,y_{1}}{1+y_{1}}-k = k\left(\frac{y_{1}- (1+y_{1})}{1+y_{1}}\right)
= -\frac{k}{1+y_{1}}.
\]
Hence, equation \((5)\) becomes:
\[
y_{2}\left(-\frac{k}{1+y_{1}}\right)
= \sin(x+y)(1+y_{1})^{2}.
\]
Now substitute \((6)\) for \(\sin(x+y)\):
\[
-\frac{k\,y_{2}}{1+y_{1}}= k\,y(1+y_{1})^{2}.
\]
Provided \(k\neq0\), we can cancel \(k\) from both sides:
\[
-\frac{y_{2}}{1+y_{1}}= y(1+y_{1})^{2}.
\]
Multiply both sides by \(1+y_{1}\) to obtain:
\[
-y_{2}= y(1+y_{1})^{3}.
\]
Rearranging gives:
\[
y_{2}+ y(1+y_{1})^{3}=0.
\]
Final Answer:
\[
y_{2}+y\left(1+y_{1}\right)^{3}=0.
\]
Question:
22. If
\[
xy=\sin x,
\]
prove that
\[
\frac{d^{2} y}{dx^{2}}+\frac{2}{x}\frac{dy}{dx}+y=0.
\]
Solution:
We are given:
\[
xy=\sin x.
\]
Differentiate both sides with respect to \(x\):
\[
\frac{d}{dx}(xy)=\frac{d}{dx}(\sin x).
\]
Applying the product rule on the left-hand side:
\[
y + x\,\frac{dy}{dx} = \cos x.
\]
This can be written as:
\[
y + xy_{1}=\cos x,\quad \text{where } y_{1}=\frac{dy}{dx}.
\]
Differentiate the resulting equation with respect to \(x\) again:
\[
\frac{d}{dx}\left(y+xy_{1}\right)=\frac{d}{dx}(\cos x).
\]
The derivative of the left-hand side (applying the product rule to \(xy_{1}\)):
\[
\frac{dy}{dx}+ \left( y_{1}+ x\,\frac{d y_{1}}{dx}\right)
= y_{1}+ y_{1}+ x\,y_{2}
=2y_{1}+xy_{2},
\]
where \(y_{2}=\frac{d^{2}y}{dx^{2}}\). The derivative of the right-hand side is:
\[
-\sin x.
\]
Therefore, we have:
\[
2y_{1}+xy_{2}=-\sin x. \tag{1}
\]
Recall that the original equation is:
\[
xy=\sin x \quad \Longrightarrow \quad \sin x=xy. \tag{2}
\]
Substituting \((2)\) into \((1)\) gives:
\[
2y_{1}+xy_{2}=-xy.
\]
Dividing both sides by \(x\) (with \(x\neq 0\)):
\[
y_{2}+\frac{2}{x}y_{1}=-y.
\]
Rearranging, we obtain:
\[
y_{2}+\frac{2}{x}y_{1}+y=0.
\]
This is the required result.
Final Answer:
\[
\frac{d^{2} y}{dx^{2}}+\frac{2}{x}\frac{dy}{dx}+y=0.
\]
Question:
23. If
\[
y=\frac{2}{\sqrt{a^{2}-b^{2}}} \tan^{-1}\left(\sqrt{\frac{a-b}{a+b}}\,\tan\frac{x}{2}\right),
\]
prove that
\[
\frac{d^{2}y}{dx^{2}}=\frac{b\,\sin x}{\left(a+b\cos x\right)^{2}}.
\]
Solution:
We are given:
\[
x = (a + bt)e^{-nt}.
\]
Step 1: First derivative
Using the product rule:
\[
\frac{dx}{dt} = \frac{d}{dt}[(a + bt)e^{-nt}]
= (a + bt)\frac{d}{dt}(e^{-nt}) + e^{-nt}\frac{d}{dt}(a + bt).
\]
Now compute derivatives:
\[
\frac{d}{dt}(a + bt) = b, \quad \frac{d}{dt}(e^{-nt}) = -n e^{-nt}.
\]
So,
\[
\frac{dx}{dt} = (a + bt)(-n e^{-nt}) + b e^{-nt}
= e^{-nt} (b – n(a + bt)).
\]
Step 2: Second derivative
Differentiate again:
\[
\frac{d^{2}x}{dt^{2}} = \frac{d}{dt} \left[ e^{-nt}(b – n(a + bt)) \right].
\]
Apply the product rule:
\[
\frac{d^{2}x}{dt^{2}} = (-n e^{-nt})(b – n(a + bt)) + e^{-nt}(-n b).
\]
Simplify:
\[
\frac{d^{2}x}{dt^{2}} = -n e^{-nt} (b – n(a + bt)) – n b e^{-nt}
= -n e^{-nt} (2b – n(a + bt)).
\]
Step 3: Evaluate the given expression
We are to prove:
\[
\frac{d^{2}x}{dt^{2}} + 2n \frac{dx}{dt} + n^{2} x = 0.
\]
Substitute all:
\[
\frac{d^{2}x}{dt^{2}} = -n e^{-nt} (2b – n(a + bt)),
\]
\[
\frac{dx}{dt} = e^{-nt} (b – n(a + bt)),
\]
\[
x = (a + bt) e^{-nt}.
\]
Plug into the expression:
\[
\frac{d^{2}x}{dt^{2}} + 2n \frac{dx}{dt} + n^{2} x
= -n e^{-nt} (2b – n(a + bt)) + 2n e^{-nt} (b – n(a + bt)) + n^{2}(a + bt) e^{-nt}.
\]
Factor out \( e^{-nt} \):
\[
= e^{-nt} \left[ -n(2b – n(a + bt)) + 2n(b – n(a + bt)) + n^{2}(a + bt) \right].
\]
Now simplify the expression in brackets:
First expand:
\[
-n(2b – n(a + bt)) = -2nb + n^{2}(a + bt),
\]
\[
2n(b – n(a + bt)) = 2nb – 2n^{2}(a + bt),
\]
\[
n^{2}(a + bt) = n^{2}(a + bt).
\]
Now add them:
\[
(-2nb + n^{2}(a + bt)) + (2nb – 2n^{2}(a + bt)) + n^{2}(a + bt)
= 0.
\]
Therefore:
\[
\frac{d^{2}x}{dt^{2}} + 2n \frac{dx}{dt} + n^{2} x = e^{-nt} \cdot 0 = 0.
\]
Final Answer:
\[
\frac{d^{2}y}{dx^{2}}=\frac{b\,\sin x}{\left(a+b\cos x\right)^{2}}.
\]
Question:
24. If \( x=(a+b\,t)e^{-n\,t} \), prove that
\[
\frac{d^{2}x}{dt^{2}}+2n\,\frac{dx}{dt}+n^{2}x=0.
\]
Solution:
We start with
\[
x=(a+b\,t)e^{-n\,t}.
\]
Differentiate using the product rule:
\[
\frac{dx}{dt}=\frac{d}{dt}\left[(a+b\,t)e^{-n\,t}\right]
= (a+b\,t)’\,e^{-n\,t}+ (a+b\,t)\,\frac{d}{dt}(e^{-n\,t}).
\]
Since
\[
(a+b\,t)’=b \quad \text{and} \quad \frac{d}{dt}(e^{-n\,t})=-n\,e^{-n\,t},
\]
we have
\[
\frac{dx}{dt}=b\,e^{-n\,t}-n(a+b\,t)e^{-n\,t}
=e^{-n\,t}\Bigl(b-n(a+b\,t)\Bigr).
\]
Next, differentiate \(\frac{dx}{dt}\):
\[
\frac{d^{2}x}{dt^{2}}=\frac{d}{dt}\left[e^{-n\,t}\Bigl(b-n(a+b\,t)\Bigr)\right].
\]
Let
\[
u(t)=e^{-n\,t}\quad \text{and} \quad v(t)=b-n(a+b\,t).
\]
Then,
\[
u'(t)=-n\,e^{-n\,t}\quad \text{and} \quad v'(t)=-n\,b.
\]
Applying the product rule yields:
\[
\frac{d^{2}x}{dt^{2}}=u'(t)v(t)+u(t)v'(t)
=-n\,e^{-n\,t}\Bigl(b-n(a+b\,t)\Bigr)-n\,b\,e^{-n\,t}.
\]
Factor \(e^{-n\,t}\):
\[
\frac{d^{2}x}{dt^{2}}
=e^{-n\,t}\Bigl[-n\Bigl(b-n(a+b\,t)\Bigr)-n\,b\Bigr].
\]
Expand the expression inside the bracket:
\[
-n\Bigl(b-n(a+b\,t)\Bigr)-n\,b
=-n\,b+n^{2}(a+b\,t)-n\,b
=n^{2}a+n^{2}b\,t-2n\,b.
\]
Thus,
\[
\frac{d^{2}x}{dt^{2}}=e^{-n\,t}\Bigl(n^{2}a+n^{2}b\,t-2n\,b\Bigr).
\]
Now, consider
\[
\frac{d^{2}x}{dt^{2}}+2n\,\frac{dx}{dt}+n^{2}x.
\]
Substitute the expressions found:
\[
\frac{d^{2}x}{dt^{2}}=e^{-n\,t}\Bigl(n^{2}a+n^{2}b\,t-2n\,b\Bigr),
\]
\[
\frac{dx}{dt}=e^{-n\,t}\Bigl(b-n(a+b\,t)\Bigr),
\]
\[
x=(a+b\,t)e^{-n\,t}.
\]
Therefore,
\[
\begin{aligned}
\frac{d^{2}x}{dt^{2}}+2n\,\frac{dx}{dt}+n^{2}x
&= e^{-n\,t}\Bigl(n^{2}a+n^{2}b\,t-2n\,b\Bigr)
+2n\,e^{-n\,t}\Bigl(b-n(a+b\,t)\Bigr)\\[1mm]
&\quad + n^{2}(a+b\,t)e^{-n\,t}.
\end{aligned}
\]
Factor \(e^{-n\,t}\):
\[
e^{-n\,t}\Bigl[\underbrace{n^{2}a+n^{2}b\,t-2n\,b}_{\text{from } \frac{d^{2}x}{dt^{2}}}
+\underbrace{2n\,(b-n\,a- n\,b\,t)}_{\text{from } 2n\,\frac{dx}{dt}}
+\underbrace{n^{2}(a+b\,t)}_{\text{from } n^{2}x}\Bigr].
\]
Combine like terms:
\[
\begin{aligned}
\text{Coefficient of } a: & \quad n^{2}a-2n^{2}a+n^{2}a=0,\\[1mm]
\text{Coefficient of } t: & \quad n^{2}b\,t-2n^{2}b\,t+n^{2}b\,t=0,\\[1mm]
\text{Constants:} & \quad -2n\,b+2n\,b=0.
\end{aligned}
\]
Hence,
\[
\frac{d^{2}x}{dt^{2}}+2n\,\frac{dx}{dt}+n^{2}x = e^{-n\,t}\cdot 0 = 0.
\]
Final Answer:
\(\frac{d^{2}x}{dt^{2}}+2n\,\frac{dx}{dt}+n^{2}x=0.\)
Question:
25. If \( y=\frac{3at}{1+t} \) and \( x=\frac{2at^{2}}{1+t} \), find \(\frac{d^{2}y}{dx^{2}}\).
Solution:
We start by differentiating \(y\) and \(x\) with respect to the parameter \(t\).
First, for
\[
y=\frac{3at}{1+t},
\]
applying the quotient rule,
\[
\frac{dy}{dt}=\frac{(3a)(1+t)-3at\cdot(1)}{(1+t)^{2}}=\frac{3a(1+t-t)}{(1+t)^{2}}=\frac{3a}{(1+t)^{2}}.
\]
Next, for
\[
x=\frac{2at^{2}}{1+t},
\]
again using the quotient rule,
\[
\frac{dx}{dt}=\frac{(1+t)\cdot(4at)-2at^{2}\cdot(1)}{(1+t)^{2}}
=\frac{4at(1+t)-2at^{2}}{(1+t)^{2}}.
\]
Factor \(2at\) from the numerator:
\[
\frac{dx}{dt}=\frac{2at\Bigl[2(1+t)-t\Bigr]}{(1+t)^{2}}
=\frac{2at(2+t)}{(1+t)^{2}}.
\]
Thus, the first derivative \(\frac{dy}{dx}\) is given by
\[
\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}
=\frac{\displaystyle \frac{3a}{(1+t)^{2}}}{\displaystyle \frac{2at(2+t)}{(1+t)^{2}}}
=\frac{3}{2t(2+t)}.
\]
To find the second derivative \(\frac{d^{2}y}{dx^{2}}\), we differentiate \(\frac{dy}{dx}\) with respect to \(t\) and then divide by \(\frac{dx}{dt}\).
Write
\[
\frac{dy}{dx}=\frac{3}{2t(2+t)}.
\]
Let
\[
u(t)=\frac{3}{2t(2+t)}.
\]
Differentiating \(u(t)\) with respect to \(t\):
\[
u'(t)=-\frac{3}{\Bigl[2t(2+t)\Bigr]^{2}}\cdot\frac{d}{dt}[2t(2+t)].
\]
First, compute:
\[
2t(2+t)=4t+2t^{2}.
\]
Its derivative is:
\[
\frac{d}{dt}[4t+2t^{2}]=4+4t=4(t+1).
\]
Thus,
\[
u'(t)=-\frac{3\cdot 4(t+1)}{\Bigl[2t(2+t)\Bigr]^{2}}
=-\frac{12(t+1)}{4t^{2}(2+t)^{2}}
=-\frac{3(t+1)}{t^{2}(2+t)^{2}}.
\]
Now, using the relation:
\[
\frac{d^{2}y}{dx^{2}}=\frac{u'(t)}{\frac{dx}{dt}},
\]
and substituting \(\frac{dx}{dt}=\frac{2at(2+t)}{(1+t)^{2}}\), we have:
\[
\frac{d^{2}y}{dx^{2}}=\frac{-\frac{3(t+1)}{t^{2}(2+t)^{2}}}{\frac{2at(2+t)}{(1+t)^{2}}}
=-\frac{3(t+1)}{t^{2}(2+t)^{2}}\cdot\frac{(1+t)^{2}}{2at(2+t)}.
\]
Simplify by combining like factors:
\[
\frac{d^{2}y}{dx^{2}}=-\frac{3(t+1)^{3}}{2at^{3}(2+t)^{3}}.
\]
Final Answer:
\[
\frac{d^{2}y}{dx^{2}}=-\frac{3(t+1)^{3}}{2at^{3}(2+t)^{3}}.
\]
Question:
26. Verify Rolle’s theorem for the function
\[
f(x)=2\cos 2\left(x-\frac{\pi}{4}\right) \quad \text{in } [0,\pi],
\]
and find the point(s) in the interval where the derivative is zero.
Solution:
We first rewrite the function by using a trigonometric identity. Note that
\[
f(x)=2\cos\left(2x-\frac{\pi}{2}\right)=2\sin2x.
\]
Since \( \sin2x \) is continuous and differentiable for all \( x \), the function is continuous on \([0,\pi]\) and differentiable on \((0,\pi)\).
Next, we check the values at the endpoints:
\[
f(0)=2\sin(0)=0,\quad f(\pi)=2\sin(2\pi)=0.
\]
Since \( f(0)=f(\pi) \), the hypothesis of Rolle’s theorem is satisfied.
Now, we find \( c \) in \( (0,\pi) \) such that \( f'(c)=0 \). Differentiate:
\[
f'(x)=\frac{d}{dx}[2\sin2x]=4\cos2x.
\]
Setting \( f'(x)=0 \):
\[
4\cos2x=0 \quad \Longrightarrow \quad \cos2x=0.
\]
The general solution for \( \cos2x=0 \) is
\[
2x=\frac{\pi}{2}+k\pi,\quad k\in \mathbb{Z},
\]
leading to
\[
x=\frac{\pi}{4}+\frac{k\pi}{2}.
\]
For \( x \) in \( (0,\pi) \), the valid solutions are:
\[
x=\frac{\pi}{4} \quad (k=0) \quad \text{and} \quad x=\frac{3\pi}{4} \quad (k=1).
\]
Final Answer:
\( f(x)=2\cos2\left(x-\frac{\pi}{4}\right) \) satisfies Rolle’s theorem on \([0,\pi]\) with \( f(0)=f(\pi)=0 \), and the derivative is zero at \( x=\frac{\pi}{4} \) and \( x=\frac{3\pi}{4} \).
Question:
27. Verify Lagrange’s mean value theorem for the function
\[
f(x)=\text{log}\, x, \quad 1\leq x\leq 2e,
\]
and find the value of \(c\) in the interval that satisfies the theorem.
Solution:
The Lagrange’s Mean Value Theorem states that if \(f\) is continuous on \([a,b]\) and differentiable on \((a,b)\), then there exists at least one number \(c\) in \((a,b)\) such that
\[
f'(c)=\frac{f(b)-f(a)}{b-a}.
\]
For \(f(x)=\text{log}\, x\) on the interval \([1,2e]\):
\[
f(1)=\text{log}\,1=0 \quad \text{and} \quad f(2e)=\text{log}\,(2e)=\text{log}\,2+\text{log}\,e=\text{log}\,2+1.
\]
Thus,
\[
\frac{f(2e)-f(1)}{2e-1}=\frac{(\text{log}\,2+1)-0}{2e-1}=\frac{\text{log}\,2+1}{2e-1}.
\]
Since
\[
f'(x)=\frac{d}{dx}\left(\text{log}\, x\right)=\frac{1}{x},
\]
we set
\[
f'(c)=\frac{1}{c}=\frac{\text{log}\,2+1}{2e-1}.
\]
Solving for \(c\):
\[
c=\frac{2e-1}{\text{log}\,2+1}.
\]
Final Answer:
\( c=\frac{2e-1}{\text{log}\,2+1} \).