Here is the complete ML Aggarwal Class 12 Solutions of Exercise – 5.7 for Chapter 5 – Continuity and Differentiability. Each question is solved step by step for better understanding.
Question:
1. (i) Find the domain of differentiability of \( \sin^{-1} x \).
Solution:
The function \( \sin^{-1} x \) has the derivative
\[
\frac{d}{dx}\sin^{-1} x = \frac{1}{\sqrt{1-x^2}}.
\]
This derivative is defined when the denominator is nonzero and real, i.e., when
\[
1 – x^2 > 0 \quad \Longrightarrow \quad -1 < x < 1.
\]
Final Answer:
The domain of differentiability of \( \sin^{-1} x \) is \( (-1, 1) \).
Question:
1. (ii) Find the domain of differentiability of \( \cos^{-1} x \).
Solution:
The derivative of \( \cos^{-1} x \) is given by
\[
\frac{d}{dx}\cos^{-1} x = -\frac{1}{\sqrt{1-x^2}}.
\]
This expression is defined when the denominator is real and nonzero, i.e., when
\[
1 – x^2 > 0 \quad \Longrightarrow \quad -1 < x < 1.
\]
Final Answer:
The domain of differentiability of \( \cos^{-1} x \) is \( (-1, 1) \).
Question:
1. (iii) Find the domain of differentiability of \( \sec^{-1} x \).
Solution:
The derivative of \( \sec^{-1} x \) is given by
\[
\frac{d}{dx} \sec^{-1} x = \frac{1}{|x|\sqrt{x^2-1}}.
\]
For the derivative to exist, the denominator must be defined and nonzero, which requires:
- \( \sqrt{x^2-1} \) is real, i.e., \( x^2-1 > 0 \) or \( |x| > 1 \).
- \( |x| \neq 0 \) is automatically satisfied when \( |x| > 1 \).
Final Answer:
The domain of differentiability of \( \sec^{-1} x \) is \( (-\infty, -1) \cup (1, \infty) \).
Question:
1. (iv) Find the domain of differentiability of \( \text{cosec}^{-1} x \).
Solution:
The derivative of \( \text{cosec}^{-1} x \) is given by
\[
\frac{d}{dx}\text{cosec}^{-1} x = -\frac{1}{|x|\sqrt{x^2-1}}.
\]
For the derivative to be defined, the denominator \( |x|\sqrt{x^2-1} \) must be nonzero and real. This requires:
- \( \sqrt{x^2-1} \) is real, i.e., \( x^2-1 > 0 \) which implies \( |x| > 1 \).
- \( |x| \) is nonzero, which is automatically satisfied when \( |x| > 1 \).
Final Answer:
The domain of differentiability of \( \text{cosec}^{-1} x \) is \( (-\infty, -1) \cup (1, \infty) \).
Question:
1. (v) Find the domain of differentiability of \( \tan^{-1} x \).
Solution:
The derivative of \( \tan^{-1} x \) is given by
\[
\frac{d}{dx}\tan^{-1} x = \frac{1}{1+x^2}.
\]
Since \( 1+x^2 > 0 \) for all \( x \in \mathbb{R} \), the derivative is defined for all real numbers.
Final Answer:
The domain of differentiability of \( \tan^{-1} x \) is \( \mathbb{R} \).
Question:
1. (vi) Find the domain of differentiability of \( \cot^{-1} x \).
Solution:
The derivative of \( \cot^{-1} x \) is given by
\[
\frac{d}{dx}\cot^{-1} x = -\frac{1}{1+x^2}.
\]
Since \( 1+x^2 > 0 \) for all \( x \in \mathbb{R} \), the derivative is defined for every real number.
Final Answer:
The domain of differentiability of \( \cot^{-1} x \) is \( \mathbb{R} \).
Question:
2. (i) Find the derivative of \( \tan^{-1}(x\sqrt{x}) \).
Solution:
First, note that
\[
\tan^{-1}(x\sqrt{x}) = \tan^{-1}\left(x^{\frac{3}{2}}\right).
\]
Differentiating using the chain rule, we have:
\[
\frac{d}{dx}\tan^{-1}\left(x^{\frac{3}{2}}\right) = \frac{1}{1+\left(x^{\frac{3}{2}}\right)^2}\cdot \frac{d}{dx}\left(x^{\frac{3}{2}}\right).
\]
Since
\[
\left(x^{\frac{3}{2}}\right)^2 = x^3 \quad \text{and} \quad \frac{d}{dx}\left(x^{\frac{3}{2}}\right) = \frac{3}{2}x^{\frac{1}{2}},
\]
it follows that:
\[
\frac{d}{dx}\tan^{-1}\left(x^{\frac{3}{2}}\right) = \frac{\frac{3}{2}x^{\frac{1}{2}}}{1+x^3}.
\]
Final Answer:
\[
\frac{d}{dx}\tan^{-1}(x\sqrt{x}) = \frac{3\sqrt{x}}{2(1+x^3)}.
\]
Question:
2. (ii) Find the derivative of \( \cos^{-1}(3x) \).
Solution:
Let \( u = 3x \). Then, using the chain rule and the derivative formula for the inverse cosine function, we have:
\[
\frac{d}{dx}\cos^{-1}(u) = -\frac{u’}{\sqrt{1-u^2}}.
\]
Here, \( u’ = 3 \) and \( u^2 = (3x)^2 = 9x^2 \).
Therefore,
\[
\frac{d}{dx}\cos^{-1}(3x) = -\frac{3}{\sqrt{1-9x^2}}.
\]
Final Answer:
\[
\frac{d}{dx}\cos^{-1}(3x) = -\frac{3}{\sqrt{1-9x^2}}.
\]
Question:
2. (iii) Find the derivative of \( \sqrt{\sin^{-1}(2x)} \).
Solution:
Let
\[
y = \sqrt{\sin^{-1}(2x)}.
\]
Using the chain rule, the derivative is:
\[
\frac{dy}{dx} = \frac{1}{2\sqrt{\sin^{-1}(2x)}} \cdot \frac{d}{dx}[\sin^{-1}(2x)].
\]
Now,
\[
\frac{d}{dx}[\sin^{-1}(2x)] = \frac{2}{\sqrt{1 – (2x)^2}} = \frac{2}{\sqrt{1 – 4x^2}}.
\]
So,
\[
\frac{dy}{dx} = \frac{1}{2\sqrt{\sin^{-1}(2x)}} \cdot \frac{2}{\sqrt{1 – 4x^2}} = \frac{1}{\sqrt{\sin^{-1}(2x)} \cdot \sqrt{1 – 4x^2}}.
\]
Final Answer:
\[
\frac{d}{dx}\left( \sqrt{\sin^{-1}(2x)} \right) = \frac{1}{\sqrt{\sin^{-1}(2x)} \cdot \sqrt{1 – 4x^2}}.
\]
Question 2 (iv):
Find the derivative of \( \sin \left(\tan^{-1} x\right) \).
Solution:
Let \( u = \tan^{-1} x \) so that the function becomes \( \sin u \). Using the chain rule, we have:
\[
\frac{d}{dx} \sin u = \cos u \cdot \frac{du}{dx}.
\]
Since \( \frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2} \), we get:
\[
\frac{du}{dx} = \frac{1}{1+x^2}.
\]
Thus, the derivative is:
\[
\frac{d}{dx}\sin\left(\tan^{-1} x\right) = \cos\left(\tan^{-1} x\right) \cdot \frac{1}{1+x^2}.
\]
Final Answer:
\[
\frac{d}{dx}\sin\left(\tan^{-1} x\right) = \frac{\cos\left(\tan^{-1} x\right)}{1+x^2}.
\]
Question 2 (v):
Find the derivative of \( \cot^{-1} \sqrt{x} \).
Solution:
Let \( u = \sqrt{x} \). Then, the function becomes \( \cot^{-1} u \).
We know that:
\[
\frac{d}{du} \cot^{-1} u = -\frac{1}{1+u^2}.
\]
Also, the derivative of \( u = \sqrt{x} \) is:
\[
\frac{du}{dx} = \frac{1}{2\sqrt{x}}.
\]
By the chain rule, we have:
\[
\frac{d}{dx} \cot^{-1} \sqrt{x} = -\frac{1}{1+u^2} \cdot \frac{1}{2\sqrt{x}}.
\]
Since \( u^2 = x \), this simplifies to:
\[
\frac{d}{dx} \cot^{-1} \sqrt{x} = -\frac{1}{2\sqrt{x}(1+x)}.
\]
Final Answer:
\[
\frac{d}{dx} \cot^{-1} \sqrt{x} = -\frac{1}{2\sqrt{x}(1+x)}.
\]
Question 2 (vi):
Find the derivative of \( \left(\tan^{-1} x\right)^{2} \).
Solution:
Let \( y = \left(\tan^{-1} x\right)^2 \). Differentiating using the chain rule, we get:
\[
\frac{dy}{dx} = 2 \tan^{-1} x \cdot \frac{d}{dx}\left(\tan^{-1} x\right).
\]
Since:
\[
\frac{d}{dx}\left(\tan^{-1} x\right) = \frac{1}{1+x^2},
\]
it follows that:
\[
\frac{dy}{dx} = \frac{2 \tan^{-1} x}{1+x^2}.
\]
Final Answer:
\[
\frac{d}{dx}\left(\tan^{-1} x\right)^{2} = \frac{2 \tan^{-1} x}{1+x^2}.
\]
Question 3(i): Find the derivative of \( \sec^{-1}(\text{cosec}\,x) \).
Solution: Let \[ y = \sec^{-1}(\text{cosec}\,x) \] We know that: \[ \text{cosec}\,x = \frac{1}{\sin x} \] So, \[ y = \sec^{-1}\left( \frac{1}{\sin x} \right) \] Now, we use the identity: \[ \sec^{-1}(u) = \cos^{-1}\left( \frac{1}{u} \right) \Rightarrow y = \cos^{-1}(\sin x) \] Now differentiate using the chain rule: \[ \frac{dy}{dx} = \frac{d}{dx} \cos^{-1}(\sin x) = -\frac{\cos x}{\sqrt{1 – \sin^2 x}} \] Simplify the denominator: \[ \sqrt{1 – \sin^2 x} = \sqrt{\cos^2 x} = |\cos x| \] So, \[ \frac{dy}{dx} = -\frac{\cos x}{|\cos x|} = -1 \quad \text{(for } \cos x > 0 \text{)} \]
Final Answer: \[ \frac{d}{dx} \sec^{-1}(\text{cosec}\,x) = -1 \]
Question 3 (ii):
Find the derivative of \( \tan^{-1}(\cot x) \).
Solution:
Let
\[
y = \tan^{-1}(\cot x).
\]
We know that
\[
\cot x = \tan\left(\frac{\pi}{2}-x\right).
\]
Hence,
\[
y = \tan^{-1}\left(\tan\left(\frac{\pi}{2}-x\right)\right).
\]
For \(\frac{\pi}{2}-x\) within the principal range of \(\tan^{-1}\), we have:
\[
\tan^{-1}\left(\tan\left(\frac{\pi}{2}-x\right)\right) = \frac{\pi}{2}-x.
\]
Differentiating with respect to \(x\) yields:
\[
\frac{dy}{dx} = -1.
\]
Final Answer:
\[ \frac{d}{dx}\tan^{-1}(\cot x) = -1 \]
Question 4 (i):
If \( f(x) = \cot^{-1}(\tan x) \), show that \( f'(x) = -1 \).
Solution:
We differentiate \( f(x) = \cot^{-1}(\tan x) \) using the chain rule.
First, recall that the derivative of \( \cot^{-1} u \) with respect to \( u \) is:
\[
\frac{d}{du}\cot^{-1} u = -\frac{1}{1+u^2}.
\]
Let \( u = \tan x \). Then, we have:
\[
\frac{du}{dx} = \sec^2 x.
\]
Applying the chain rule:
\[
f'(x) = -\frac{1}{1+(\tan x)^2} \cdot \sec^2 x.
\]
Using the trigonometric identity \( 1+\tan^2 x = \sec^2 x \), we obtain:
\[
f'(x) = -\frac{\sec^2 x}{\sec^2 x} = -1.
\]
Final Answer:
\( f'(x) = -1 \).
Question 4 (ii):
If \( f(x)=\sin^{-1} x+\sec^{-1} \frac{1}{x} \), find \( f'(x) \).
Solution:
We differentiate each term separately.
For the first term:
\[
\frac{d}{dx}\sin^{-1} x = \frac{1}{\sqrt{1-x^2}}.
\]
For the second term, let \( u=\frac{1}{x} \) so that:
\[
\frac{du}{dx} = -\frac{1}{x^2}.
\]
The derivative of \( \sec^{-1} u \) is:
\[
\frac{d}{du}\sec^{-1} u = \frac{1}{|u|\sqrt{u^2-1}}.
\]
Substituting \( u=\frac{1}{x} \), we have:
\[
|u|=\frac{1}{|x|} \quad \text{and} \quad u^2-1=\frac{1}{x^2}-1=\frac{1-x^2}{x^2},
\]
so that:
\[
\sqrt{u^2-1}=\frac{\sqrt{1-x^2}}{|x|}.
\]
Thus, the derivative of the second term is:
\[
\frac{d}{dx}\sec^{-1}\left(\frac{1}{x}\right)
= \frac{-\frac{1}{x^2}}{\frac{1}{|x|}\cdot\frac{\sqrt{1-x^2}}{|x|}}
= -\frac{1}{\sqrt{1-x^2}}.
\]
Adding the two derivatives:
\[
f'(x)=\frac{1}{\sqrt{1-x^2}}-\frac{1}{\sqrt{1-x^2}}=0.
\]
Final Answer:
\[
f'(x)=0.
\]
Question 5 (i):
If \( y=\tan^{-1} x+\cot^{-1} \frac{1}{x},\ x>0 \), find \( \frac{dy}{dx} \).
Solution:
We have:
\[
y=\tan^{-1} x+\cot^{-1}\frac{1}{x}.
\]
Differentiating the first term:
\[
\frac{d}{dx}\tan^{-1} x=\frac{1}{1+x^2}.
\]
For the second term, let \( u=\frac{1}{x} \) so that:
\[
\frac{du}{dx}=-\frac{1}{x^2},
\]
and
\[
\frac{d}{du}\cot^{-1} u=-\frac{1}{1+u^2}.
\]
By the chain rule:
\[
\frac{d}{dx}\cot^{-1}\frac{1}{x} = -\frac{1}{1+\left(\frac{1}{x}\right)^2}\cdot\left(-\frac{1}{x^2}\right)
= \frac{1}{1+\frac{1}{x^2}}\cdot\frac{1}{x^2}.
\]
Notice that:
\[
1+\frac{1}{x^2}=\frac{x^2+1}{x^2},
\]
so that:
\[
\frac{1}{1+\frac{1}{x^2}}=\frac{x^2}{x^2+1}.
\]
Therefore:
\[
\frac{d}{dx}\cot^{-1}\frac{1}{x}=\frac{x^2}{x^2+1}\cdot\frac{1}{x^2}
=\frac{1}{1+x^2}.
\]
Adding the derivatives of both terms:
\[
\frac{dy}{dx}=\frac{1}{1+x^2}+\frac{1}{1+x^2}
=\frac{2}{1+x^2}.
\]
Final Answer:
\[
\frac{dy}{dx}=\frac{2}{1+x^2}.
\]
Question 5 (ii):
If \( y=\sin^{-1}(\cos x)+3\,\csc^{-1}(\sec x) \), find \(\frac{dy}{dx}\).
Solution:
We start by simplifying each term using trigonometric identities.
For the first term, note that
\[
\cos x = \sin\left(\frac{\pi}{2}-x\right).
\]
Hence,
\[
\sin^{-1}(\cos x) = \sin^{-1}\left(\sin\left(\frac{\pi}{2}-x\right)\right) = \frac{\pi}{2}-x,
\]
provided that \(\frac{\pi}{2}-x\) lies in the principal range of \(\sin^{-1}\).
For the second term, observe that
\[
\sec x = \frac{1}{\cos x} = \csc\left(\frac{\pi}{2}-x\right),
\]
so that
\[
\csc^{-1}(\sec x) = \csc^{-1}\left(\csc\left(\frac{\pi}{2}-x\right)\right) = \frac{\pi}{2}-x,
\]
assuming the appropriate range for the inverse cosecant function.
Therefore, the function becomes:
\[
y=\left(\frac{\pi}{2}-x\right)+3\left(\frac{\pi}{2}-x\right)=4\left(\frac{\pi}{2}-x\right)=2\pi-4x.
\]
Differentiating with respect to \(x\) yields:
\[
\frac{dy}{dx}=-4.
\]
Final Answer:
\(-4\)
Question 6 (i):
Differentiate \( x \tan^{-1} x \) with respect to \( x \).
Solution:
We differentiate using the product rule.
Let:
\[
u = x \quad \text{and} \quad v = \tan^{-1} x.
\]
Then,
\[
u’ = 1 \quad \text{and} \quad v’ = \frac{1}{1+x^2}.
\]
Applying the product rule:
\[
\frac{d}{dx}\left(x \tan^{-1} x\right) = u’v + uv’ = \tan^{-1} x + x \cdot \frac{1}{1+x^2}.
\]
Thus, the derivative is:
\[
\tan^{-1} x + \frac{x}{1+x^2}.
\]
Final Answer:
\(\tan^{-1} x + \frac{x}{1+x^2}\)
Question 6 (ii):
Differentiate \( x \cos^{-1} \sqrt{x} \) with respect to \( x \).
Solution:
We differentiate using the product rule by letting:
\[
u = x \quad \text{and} \quad v = \cos^{-1} \sqrt{x}.
\]
Then, \( u’ = 1 \) and we differentiate \( v \) using the chain rule.
Let \( w = \sqrt{x} \) so that \( v = \cos^{-1} w \) and \( \frac{dw}{dx} = \frac{1}{2\sqrt{x}} \).
The derivative of \( \cos^{-1} w \) is:
\[
\frac{dv}{dw} = -\frac{1}{\sqrt{1-w^2}},
\]
thus,
\[
v’ = -\frac{1}{\sqrt{1-x}} \cdot \frac{1}{2\sqrt{x}} = -\frac{1}{2\sqrt{x}\sqrt{1-x}}.
\]
Now, applying the product rule:
\[
\frac{d}{dx}\left( x \cos^{-1} \sqrt{x} \right) = u’v + uv’ = \cos^{-1} \sqrt{x} – \frac{x}{2\sqrt{x}\sqrt{1-x}}.
\]
Simplifying:
\[
\frac{x}{2\sqrt{x}\sqrt{1-x}} = \frac{\sqrt{x}}{2\sqrt{1-x}},
\]
so the derivative is:
\[
\cos^{-1} \sqrt{x} – \frac{\sqrt{x}}{2\sqrt{1-x}}.
\]
Final Answer:
\(\cos^{-1} \sqrt{x} – \frac{\sqrt{x}}{2\sqrt{1-x}}\)
Question 6 (iii):
Differentiate \( \frac{\sin^{-1} x}{x} \) with respect to \( x \).
Solution:
Let \( y = \frac{\sin^{-1} x}{x} \).
Using the quotient rule where
\[
u = \sin^{-1} x \quad \text{and} \quad v = x,
\]
we have:
\[
u’ = \frac{1}{\sqrt{1-x^2}} \quad \text{and} \quad v’ = 1.
\]
The quotient rule gives:
\[
y’=\frac{u’v-uv’}{v^2} = \frac{\frac{1}{\sqrt{1-x^2}}\cdot x-\sin^{-1} x\cdot 1}{x^2}
= \frac{\frac{x}{\sqrt{1-x^2}}-\sin^{-1} x}{x^2}.
\]
Multiplying numerator and denominator by \(\sqrt{1-x^2}\), we get:
\[
y’=\frac{x-\sin^{-1} x\,\sqrt{1-x^2}}{x^2\sqrt{1-x^2}}.
\]
Final Answer:
\(\frac{x-\sin^{-1} x\,\sqrt{1-x^2}}{x^2\sqrt{1-x^2}}\)
Question 7 (i):
Differentiate \( \cos^{-1}\left(\frac{1-x}{1+x}\right) \) with respect to \( x \).
Solution:
Let
\[
y = \cos^{-1}\left(\frac{1-x}{1+x}\right)
\]
and denote
\[
u = \frac{1-x}{1+x}.
\]
Then, using the chain rule:
\[
\frac{dy}{dx} = -\frac{1}{\sqrt{1-u^2}} \cdot \frac{du}{dx}.
\]
First, differentiate \( u \):
\[
u = \frac{1-x}{1+x} \quad \Longrightarrow \quad \frac{du}{dx} = \frac{- (1+x) – (1-x)}{(1+x)^2} = -\frac{2}{(1+x)^2}.
\]
Next, compute \( \sqrt{1-u^2} \). We have:
\[
u^2 = \left(\frac{1-x}{1+x}\right)^2 \quad \Longrightarrow \quad 1-u^2 = \frac{(1+x)^2-(1-x)^2}{(1+x)^2}.
\]
Note that:
\[
(1+x)^2 – (1-x)^2 = \left(1+2x+x^2\right)-\left(1-2x+x^2\right) = 4x,
\]
so that:
\[
1-u^2 = \frac{4x}{(1+x)^2} \quad \Longrightarrow \quad \sqrt{1-u^2} = \frac{2\sqrt{x}}{1+x}.
\]
Substituting these into the derivative:
\[
\frac{dy}{dx} = -\frac{1}{\frac{2\sqrt{x}}{1+x}} \cdot \left(-\frac{2}{(1+x)^2}\right)
= \frac{2}{(1+x)^2} \cdot \frac{1+x}{2\sqrt{x}}
= \frac{1}{(1+x)\sqrt{x}}.
\]
Final Answer:
\(\frac{1}{(1+x)\sqrt{x}}\)
Question 7 (ii):
Differentiate \( \sec^{-1}\left(\frac{1}{x-1}\right) \) with respect to \( x \).
Solution:
Let
\[
y = \sec^{-1}\left(\frac{1}{x-1}\right),
\]
and define
\[
u = \frac{1}{x-1}.
\]
The derivative of \( \sec^{-1} u \) with respect to \( u \) is given by:
\[
\frac{d}{du} \left(\sec^{-1} u\right) = \frac{1}{|u|\sqrt{u^2-1}}.
\]
First, differentiate \( u \) with respect to \( x \):
\[
u = \frac{1}{x-1} \quad \Longrightarrow \quad u’ = -\frac{1}{(x-1)^2}.
\]
Next, note that:
\[
u^2 = \frac{1}{(x-1)^2} \quad \Longrightarrow \quad u^2-1 = \frac{1-(x-1)^2}{(x-1)^2}.
\]
Also, \( |u| = \frac{1}{|x-1|} \).
Now, applying the chain rule:
\[
\frac{dy}{dx} = \frac{u’}{|u|\sqrt{u^2-1}}
= \frac{-\frac{1}{(x-1)^2}}{\frac{1}{|x-1|}\sqrt{\frac{1-(x-1)^2}{(x-1)^2}}}.
\]
Simplify the square root:
\[
\sqrt{\frac{1-(x-1)^2}{(x-1)^2}} = \frac{\sqrt{1-(x-1)^2}}{|x-1|}.
\]
Substituting back, we have:
\[
\frac{dy}{dx} = -\frac{1}{(x-1)^2} \cdot \frac{|x-1|}{\frac{\sqrt{1-(x-1)^2}}{|x-1|}}
= -\frac{1}{(x-1)^2} \cdot \frac{|x-1|^2}{\sqrt{1-(x-1)^2}}.
\]
Since \( |x-1|^2=(x-1)^2 \), the expression simplifies to:
\[
\frac{dy}{dx} = -\frac{1}{\sqrt{1-(x-1)^2}}.
\]
Finally, note that:
\[
1-(x-1)^2 = 1-(x^2-2x+1)=2x-x^2.
\]
Therefore, the derivative is:
\[
\frac{dy}{dx} = -\frac{1}{\sqrt{2x-x^2}}.
\]
Final Answer:
\(-\frac{1}{\sqrt{2x-x^2}}\)
Question 7 (iii):
Differentiate \( \sin^{-1}\left(\frac{1}{\sqrt{x+1}}\right) \) with respect to \( x \).
Solution:
Let
\[
y = \sin^{-1}\left(\frac{1}{\sqrt{x+1}}\right).
\]
Define
\[
u = \frac{1}{\sqrt{x+1}} = (x+1)^{-1/2}.
\]
Then, by the chain rule,
\[
\frac{dy}{dx} = \frac{1}{\sqrt{1-u^2}} \cdot \frac{du}{dx}.
\]
First, compute \( \frac{du}{dx} \):
\[
\frac{du}{dx} = -\frac{1}{2}(x+1)^{-3/2}.
\]
Next, note that
\[
u^2 = \frac{1}{x+1}, \quad \text{so} \quad 1-u^2 = 1 – \frac{1}{x+1} = \frac{x}{x+1}.
\]
Hence,
\[
\sqrt{1-u^2} = \sqrt{\frac{x}{x+1}} = \frac{\sqrt{x}}{\sqrt{x+1}}.
\]
Substituting these into the derivative,
\[
\frac{dy}{dx} = \frac{-\frac{1}{2}(x+1)^{-3/2}}{\frac{\sqrt{x}}{\sqrt{x+1}}}
= -\frac{1}{2} (x+1)^{-3/2} \cdot \frac{\sqrt{x+1}}{\sqrt{x}}
= -\frac{1}{2} \frac{1}{(x+1)\sqrt{x}}.
\]
Final Answer:
\(-\frac{1}{2(x+1)\sqrt{x}}\)
Question 8 (i):
Differentiate \( \sin^{-1} x + \sin^{-1}\sqrt{1-x^2} \) with respect to \( x \).
Solution:
Let
\[
y = \sin^{-1} x + \sin^{-1}\sqrt{1-x^2}.
\]
Set \( u = \sin^{-1} x \). Then, by the Pythagorean identity,
\[
\sqrt{1-x^2} = \cos u.
\]
Hence,
\[
\sin^{-1}\sqrt{1-x^2} = \sin^{-1}(\cos u).
\]
For \( u \) in the range \([0, \frac{\pi}{2}]\), we have the identity:
\[
\sin^{-1}(\cos u) = \frac{\pi}{2} – u.
\]
Therefore,
\[
y = u + \left(\frac{\pi}{2} – u\right) = \frac{\pi}{2}.
\]
Since \( y \) is a constant, its derivative is:
\[
\frac{dy}{dx} = 0.
\]
Final Answer:
\(0\)
Question 8 (ii):
Differentiate
\[
y=x\left(\sin^{-1}x\right)^2+2\sqrt{1-x^2}\,\sin^{-1}x-2x
\]
with respect to \(x\).
Solution:
Let
\[
u=\sin^{-1}x.
\]
Then the given function can be written as:
\[
y=x\,u^2+2\sqrt{1-x^2}\,u-2x.
\]
We differentiate term by term.
\(\mathbf{Term\ 1:}\) For \(x\,u^2\), using the product rule:
\[
\frac{d}{dx}\left(x\,u^2\right)=u^2+x\cdot2u\cdot\frac{du}{dx}.
\]
Since
\[
\frac{du}{dx}=\frac{1}{\sqrt{1-x^2}},
\]
this becomes:
\[
u^2+\frac{2xu}{\sqrt{1-x^2}}.
\]
\(\mathbf{Term\ 2:}\) For \(2\sqrt{1-x^2}\,u\), again applying the product rule:
\[
\frac{d}{dx}\left(2\sqrt{1-x^2}\,u\right)=2\left[\frac{d}{dx}\left(\sqrt{1-x^2}\right)u+\sqrt{1-x^2}\cdot\frac{du}{dx}\right].
\]
We know:
\[
\frac{d}{dx}\left(\sqrt{1-x^2}\right)=\frac{-x}{\sqrt{1-x^2}},
\]
so:
\[
2\left[-\frac{xu}{\sqrt{1-x^2}}+\sqrt{1-x^2}\cdot\frac{1}{\sqrt{1-x^2}}\right]=2\left[-\frac{xu}{\sqrt{1-x^2}}+1\right].
\]
\(\mathbf{Term\ 3:}\) The derivative of \(-2x\) is \(-2\).
Now, summing the derivatives of all terms:
\[
y’=\left[u^2+\frac{2xu}{\sqrt{1-x^2}}\right]+2\left(1-\frac{xu}{\sqrt{1-x^2}}\right)-2.
\]
Notice that:
\[
\frac{2xu}{\sqrt{1-x^2}}-2\frac{xu}{\sqrt{1-x^2}}=0,
\]
and:
\[
2-2=0.
\]
Therefore, the derivative simplifies to:
\[
y’=u^2=\left(\sin^{-1}x\right)^2.
\]
Final Answer:
\(\left(\sin^{-1}x\right)^2\)
Question 9 (i):
Differentiate \( \tan^{-1}(\sin x+\cos x) \) with respect to \( x \).
Solution:
Let
\[
y = \tan^{-1}(\sin x+\cos x).
\]
Using the chain rule, we have:
\[
\frac{dy}{dx} = \frac{1}{1+(\sin x+\cos x)^2}\cdot\frac{d}{dx}(\sin x+\cos x).
\]
Differentiating \(\sin x+\cos x\) with respect to \(x\):
\[
\frac{d}{dx}(\sin x+\cos x) = \cos x-\sin x.
\]
Next, simplify the term \((\sin x+\cos x)^2\):
\[
(\sin x+\cos x)^2 = \sin^2x+2\sin x\cos x+\cos^2x = 1+ \sin 2x.
\]
Thus, the derivative becomes:
\[
\frac{dy}{dx} = \frac{\cos x-\sin x}{1+(1+\sin2x)} = \frac{\cos x-\sin x}{2+\sin2x}.
\]
Final Answer:
\[ \frac{d}{dx}\tan^{-1}(\sin x+\cos x) = \frac{\cos x-\sin x}{2+\sin2x} \]
Question 9 (ii):
Differentiate \( \tan^{-1}\left(\frac{\sin x}{1+\cos x}\right) \) with respect to \( x \).
Solution:
Let
\[
y = \tan^{-1}\left(\frac{\sin x}{1+\cos x}\right).
\]
We know that using the half-angle identity:
\[
\tan\frac{x}{2} = \frac{\sin x}{1+\cos x}.
\]
Therefore,
\[
y = \tan^{-1}\left(\tan\frac{x}{2}\right) = \frac{x}{2},
\]
provided that \(\frac{x}{2}\) lies within the principal range of \(\tan^{-1}\).
Differentiating with respect to \( x \):
\[
\frac{dy}{dx} = \frac{1}{2}.
\]
Final Answer:
\[ \frac{d}{dx}\tan^{-1}\left(\frac{\sin x}{1+\cos x}\right) = \frac{1}{2} \]
Question 9 (iii):
Differentiate \( \tan^{-1}\left(\frac{1+\cos x}{\sin x}\right) \) with respect to \( x \).
Solution:
Let
\[
y = \tan^{-1}\left(\frac{1+\cos x}{\sin x}\right).
\]
Using the half-angle identity, we know that
\[
\cot\frac{x}{2} = \frac{1+\cos x}{\sin x}.
\]
Thus, we can write:
\[
y = \tan^{-1}\left(\cot\frac{x}{2}\right).
\]
Since
\[
\cot\frac{x}{2} = \tan\left(\frac{\pi}{2}-\frac{x}{2}\right),
\]
it follows that
\[
y = \tan^{-1}\left(\tan\left(\frac{\pi}{2}-\frac{x}{2}\right)\right)= \frac{\pi}{2}-\frac{x}{2},
\]
assuming the angle \(\frac{\pi}{2}-\frac{x}{2}\) lies in the principal range of \(\tan^{-1}\).
Differentiating with respect to \(x\):
\[
\frac{dy}{dx} = -\frac{1}{2}.
\]
Final Answer:
\[ \frac{d}{dx}\tan^{-1}\left(\frac{1+\cos x}{\sin x}\right) = -\frac{1}{2} \]
Question 9 (iv):
Differentiate \( \tan^{-1}\left(\frac{\cos x}{1+\sin x}\right) \) with respect to \( x \).
Solution:
Let
\[
y = \tan^{-1}\left(\frac{\cos x}{1+\sin x}\right).
\]
We use the half-angle identity:
\[
\cot\frac{x}{2} = \frac{\cos x}{1+\sin x}.
\]
Thus,
\[
y = \tan^{-1}\left(\cot\frac{x}{2}\right).
\]
Since
\[
\cot\frac{x}{2} = \tan\left(\frac{\pi}{2}-\frac{x}{2}\right),
\]
we have:
\[
y = \tan^{-1}\left(\tan\left(\frac{\pi}{2}-\frac{x}{2}\right)\right) = \frac{\pi}{2}-\frac{x}{2},
\]
assuming the angle lies within the principal range of \(\tan^{-1}\).
Differentiating with respect to \(x\):
\[
\frac{dy}{dx} = -\frac{1}{2}.
\]
Final Answer:
\[ \frac{d}{dx}\tan^{-1}\left(\frac{\cos x}{1+\sin x}\right) = -\frac{1}{2} \]
Question 10 (i):
Differentiate \( \cot^{-1}(\csc x+\cot x) \) with respect to \( x \).
Solution:
Let
\[
y = \cot^{-1}(\csc x+\cot x).
\]
We use the trigonometric identity:
\[
\csc x+\cot x = \cot\frac{x}{2}.
\]
Hence,
\[
y = \cot^{-1}\left(\cot\frac{x}{2}\right).
\]
Since the principal value of \(\cot^{-1}\) lies in \((0,\pi)\) and \(\frac{x}{2}\) is assumed to be in this range, we have:
\[
\cot^{-1}\left(\cot\frac{x}{2}\right)=\frac{x}{2}.
\]
Differentiating with respect to \( x \):
\[
\frac{dy}{dx} = \frac{1}{2}.
\]
Final Answer:
\[ \frac{d}{dx}\cot^{-1}(\csc x+\cot x) = \frac{1}{2} \]
Question 10 (ii):
Differentiate \( \tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right) \) with respect to \( x \).
Solution:
Let
\[
y = \tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right).
\]
Recognize the half-angle identity:
\[
\tan\frac{x}{2} = \sqrt{\frac{1-\cos x}{1+\cos x}}.
\]
Therefore,
\[
y = \tan^{-1}\left(\tan\frac{x}{2}\right) = \frac{x}{2},
\]
provided that \(\frac{x}{2}\) lies within the principal range of \(\tan^{-1}\).
Differentiating with respect to \( x \):
\[
\frac{dy}{dx} = \frac{1}{2}.
\]
Final Answer:
\[ \frac{d}{dx}\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right) = \frac{1}{2} \]
Question 10 (iii):
Differentiate \( \cot^{-1}\left(\sqrt{\frac{1-\sin x}{1+\sin x}}\right) \) with respect to \( x \).
Solution:
Let
\[
y = \cot^{-1}\left(\sqrt{\frac{1-\sin x}{1+\sin x}}\right).
\]
We use the identity:
\[
\tan\left(\frac{\pi}{4}+\frac{x}{2}\right) = \sqrt{\frac{1+\sin x}{1-\sin x}},
\]
which implies that
\[
\sqrt{\frac{1-\sin x}{1+\sin x}} = \cot\left(\frac{\pi}{4}+\frac{x}{2}\right).
\]
Hence, we can rewrite \( y \) as:
\[
y = \cot^{-1}\left(\cot\left(\frac{\pi}{4}+\frac{x}{2}\right)\right).
\]
Since the inverse cotangent of the cotangent of an angle returns that angle (assuming the angle lies within the principal range), we have:
\[
y = \frac{\pi}{4}+\frac{x}{2}.
\]
Differentiating with respect to \( x \):
\[
\frac{dy}{dx} = \frac{d}{dx}\left(\frac{\pi}{4}+\frac{x}{2}\right) = \frac{1}{2}.
\]
Final Answer:
\[ \frac{d}{dx}\cot^{-1}\left(\sqrt{\frac{1-\sin x}{1+\sin x}}\right) = \frac{1}{2} \]
Question:
12. (i) \( \tan^{-1}\left(\frac{2x}{1-x^2}\right) \)
Solution:
Let
\[
f(x)=\tan^{-1}\left(\frac{2x}{1-x^2}\right)
\]
and define
\[
u(x)=\frac{2x}{1-x^2}.
\]
Then, using the chain rule,
\[
f'(x)=\frac{u'(x)}{1+u(x)^2}.
\]
First, differentiate \( u(x) \) using the quotient rule:
\[
u'(x)=\frac{(2)(1-x^2)-2x(-2x)}{(1-x^2)^2}
= \frac{2(1-x^2)+4x^2}{(1-x^2)^2}
= \frac{2(1+x^2)}{(1-x^2)^2}.
\]
Next, compute \( u(x)^2 \):
\[
u(x)^2=\left(\frac{2x}{1-x^2}\right)^2=\frac{4x^2}{(1-x^2)^2}.
\]
Therefore,
\[
1+u(x)^2 = \frac{(1-x^2)^2+4x^2}{(1-x^2)^2}
= \frac{1-2x^2+x^4+4x^2}{(1-x^2)^2}
= \frac{1+2x^2+x^4}{(1-x^2)^2}
= \frac{(1+x^2)^2}{(1-x^2)^2}.
\]
Now, substitute \( u'(x) \) and \( 1+u(x)^2 \) into the derivative:
\[
f'(x)=\frac{\frac{2(1+x^2)}{(1-x^2)^2}}{\frac{(1+x^2)^2}{(1-x^2)^2}}
=\frac{2(1+x^2)}{(1+x^2)^2}
=\frac{2}{1+x^2}.
\]
Final Answer:
\(\displaystyle \frac{2}{1+x^2}\)
Question:
12. (ii) \( \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) \)
Solution:
Let
\[
f(x)=\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)
\]
and set
\[
u(x)=\frac{1-x^2}{1+x^2}.
\]
Then, by the chain rule,
\[
f'(x)=-\frac{u'(x)}{\sqrt{1-u(x)^2}}.
\]
First, differentiate \( u(x) \) using the quotient rule:
\[
u'(x)=\frac{(-2x)(1+x^2) – (1-x^2)(2x)}{(1+x^2)^2}
= \frac{-2x(1+x^2)-2x(1-x^2)}{(1+x^2)^2}.
\]
Notice that:
\[
-2x(1+x^2)-2x(1-x^2) = -2x\Big[(1+x^2)+(1-x^2)\Big] = -2x(2)= -4x.
\]
Hence,
\[
u'(x)=\frac{-4x}{(1+x^2)^2}.
\]
Next, compute \( 1-u(x)^2 \):
\[
u(x)^2=\left(\frac{1-x^2}{1+x^2}\right)^2=\frac{(1-x^2)^2}{(1+x^2)^2},
\]
so that
\[
1-u(x)^2=\frac{(1+x^2)^2-(1-x^2)^2}{(1+x^2)^2}.
\]
Expanding the numerator:
\[
(1+x^2)^2-(1-x^2)^2=\left(1+2x^2+x^4\right)-\left(1-2x^2+x^4\right)=4x^2.
\]
Therefore,
\[
1-u(x)^2=\frac{4x^2}{(1+x^2)^2} \quad \text{and} \quad \sqrt{1-u(x)^2}=\frac{2|x|}{1+x^2}.
\]
Now, substituting \( u'(x) \) and \( \sqrt{1-u(x)^2} \) into the derivative:
\[
f'(x)=-\frac{-4x/(1+x^2)^2}{2|x|/(1+x^2)}
=\frac{4x}{(1+x^2)^2}\cdot\frac{1+x^2}{2|x|}
=\frac{4x}{2|x|(1+x^2)}
=\frac{2x}{|x|(1+x^2)}.
\]
Recognizing that
\[
\frac{x}{|x|}=\text{sgn}(x),
\]
we have:
\[
f'(x)=\frac{2\,\text{sgn}(x)}{1+x^2}.
\]
For \( x>0 \), this reduces to:
\[
f'(x)=\frac{2}{1+x^2}.
\]
Final Answer:
\(\displaystyle f'(x)=\frac{2\,\text{sgn}(x)}{1+x^2}\) (or \(\displaystyle \frac{2}{1+x^2}\) for \( x>0 \)).
Question:
12. (iii) \( \cos^{-1}\left(1-2x^2\right) \) (with hint: \( n=\sin \theta \))
Solution:
Let
\[
f(x)=\cos^{-1}\left(1-2x^2\right).
\]
Using the chain rule, the derivative is given by:
\[
f'(x)=-\frac{d}{dx}\left(1-2x^2\right)\Big/\sqrt{1-\left(1-2x^2\right)^2}.
\]
First, differentiate the inner function:
\[
\frac{d}{dx}\left(1-2x^2\right)=-4x.
\]
Therefore,
\[
f'(x)=-\frac{-4x}{\sqrt{1-\left(1-2x^2\right)^2}}
=\frac{4x}{\sqrt{1-\left(1-2x^2\right)^2}}.
\]
Next, simplify the expression under the square root:
\[
1-\left(1-2x^2\right)^2 = 1-\left(1-4x^2+4x^4\right)
= 4x^2-4x^4
= 4x^2\left(1-x^2\right).
\]
Hence,
\[
\sqrt{1-\left(1-2x^2\right)^2} = \sqrt{4x^2\left(1-x^2\right)}
=2|x|\sqrt{1-x^2}.
\]
Substituting back into the derivative:
\[
f'(x)=\frac{4x}{2|x|\sqrt{1-x^2}}
=\frac{2x}{|x|\sqrt{1-x^2}}.
\]
Notice that
\[
\frac{x}{|x|}=\text{sgn}(x),
\]
where \(\text{sgn}(x)\) is the sign function. Thus,
\[
f'(x)=\frac{2\,\text{sgn}(x)}{\sqrt{1-x^2}}.
\]
In particular, if \( x>0 \) then \(\text{sgn}(x)=1\) and
\[
f'(x)=\frac{2}{\sqrt{1-x^2}}.
\]
Final Answer:
\(\displaystyle f'(x)=\frac{2\,\text{sgn}(x)}{\sqrt{1-x^2}}\) (or \(\displaystyle \frac{2}{\sqrt{1-x^2}}\) for \( x>0 \)).
Question:
12. (iv) \( \sin^{-1}\left(2x\sqrt{1-x^2}\right) \) (With hint: set \( x=\sin \theta \))
Solution:
Let
\[
f(x)=\sin^{-1}\left(2x\sqrt{1-x^2}\right)
\]
and define
\[
u(x)=2x\sqrt{1-x^2}.
\]
The derivative of \( f(x) \) is given by:
\[
f'(x)=\frac{u'(x)}{\sqrt{1-u(x)^2}}.
\]
First, we compute \( u(x)^2 \):
\[
u(x)^2=4x^2(1-x^2)=4x^2-4x^4.
\]
Therefore,
\[
1-u(x)^2=1-4x^2+4x^4=(1-2x^2)^2,
\]
so that
\[
\sqrt{1-u(x)^2}=|1-2x^2|.
\]
Next, differentiate \( u(x)=2x\sqrt{1-x^2} \) using the product rule:
\[
u'(x)=2\sqrt{1-x^2}+2x\cdot\frac{-x}{\sqrt{1-x^2}}
=2\sqrt{1-x^2}-\frac{2x^2}{\sqrt{1-x^2}}.
\]
Writing over a common denominator, we have:
\[
u'(x)=\frac{2(1-x^2)-2x^2}{\sqrt{1-x^2}}
=\frac{2-4x^2}{\sqrt{1-x^2}}
=\frac{2(1-2x^2)}{\sqrt{1-x^2}}.
\]
Now, substituting \( u'(x) \) and \( \sqrt{1-u(x)^2} \) into the derivative formula gives:
\[
f'(x)=\frac{2(1-2x^2)/\sqrt{1-x^2}}{|1-2x^2|}
=\frac{2}{\sqrt{1-x^2}}\cdot\frac{1-2x^2}{|1-2x^2|}.
\]
The fraction \(\frac{1-2x^2}{|1-2x^2|}\) represents the sign of \(1-2x^2\). Hence, we can write:
\[
f'(x)=\frac{2\,\text{sgn}(1-2x^2)}{\sqrt{1-x^2}},
\]
where
\[
\text{sgn}(1-2x^2)=
\begin{cases}
1, & \text{if } 1-2x^2>0,\\[4pt]
-1, & \text{if } 1-2x^2<0.
\end{cases}
\]
For the principal branch (typically when \(1-2x^2>0\)), this simplifies to:
\[
f'(x)=\frac{2}{\sqrt{1-x^2}}.
\]
Final Answer:
\(\displaystyle f'(x)=\frac{2\,\text{sgn}(1-2x^2)}{\sqrt{1-x^2}}\) (or \(\displaystyle \frac{2}{\sqrt{1-x^2}}\) when \(1-2x^2>0\)).
Question:
13. (i) \( \sin^{-1}\left(3x-4x^3\right) \quad (n=\sin \theta) \)
Solution:
Notice that if we set
\[
x=\sin \theta,
\]
then we have the trigonometric identity:
\[
3\sin\theta-4\sin^3\theta=\sin 3\theta.
\]
Hence,
\[
f(x)=\sin^{-1}\left(3x-4x^3\right)=\sin^{-1}(\sin 3\theta).
\]
For values of \(\theta\) in the appropriate interval, this simplifies to:
\[
f(x)=3\theta.
\]
Since \(x=\sin \theta\), we have:
\[
\theta=\sin^{-1} x.
\]
Therefore,
\[
f(x)=3\sin^{-1} x.
\]
Differentiating with respect to \(x\):
\[
f'(x)=3\cdot\frac{d}{dx}\left(\sin^{-1} x\right)
=\frac{3}{\sqrt{1-x^2}}.
\]
Final Answer:
\(\displaystyle f'(x)=\frac{3}{\sqrt{1-x^2}}\)
Question:
13. (ii) \( \tan^{-1}\left(\frac{3x – x^3}{1 – 3x^2}\right) \quad (\mathrm{with}\ x = \tan \theta) \)
Solution:
Let
\[
f(x)=\tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right).
\]
Substitute
\[
x=\tan \theta.
\]
Then, the expression inside the arctan becomes
\[
\frac{3\tan\theta-\tan^3\theta}{1-3\tan^2\theta}.
\]
Recall the triple angle formula for tangent:
\[
\tan 3\theta=\frac{3\tan\theta-\tan^3\theta}{1-3\tan^2\theta}.
\]
Hence,
\[
f(x)=\tan^{-1}(\tan 3\theta).
\]
For values of \(\theta\) where the inverse tangent and tangent functions cancel appropriately, we have:
\[
f(x)=3\theta.
\]
Since \(x=\tan \theta\), it follows that:
\[
\theta=\tan^{-1}x.
\]
Therefore, the function can be written as:
\[
f(x)=3\tan^{-1}x.
\]
Differentiating with respect to \(x\):
\[
f'(x)=3\cdot\frac{d}{dx}\left(\tan^{-1}x\right)
=\frac{3}{1+x^2}.
\]
Final Answer:
\(\displaystyle f'(x)=\frac{3}{1+x^2}\)
Question:
13. (iii) \( \cos^{-1}\left(\frac{2x}{1+x^2}\right) \quad \text{with } x=\tan\theta \)
Solution:
Let
\[
f(x)=\cos^{-1}\left(\frac{2x}{1+x^2}\right).
\]
Substitute \( x=\tan\theta \). Then, note that:
\[
\frac{2x}{1+x^2}=\frac{2\tan\theta}{1+\tan^2\theta}=\sin 2\theta.
\]
Hence, we have:
\[
f(x)=\cos^{-1}(\sin 2\theta).
\]
Using the identity \(\sin 2\theta=\cos\Big(\frac{\pi}{2}-2\theta\Big)\), it follows that:
\[
f(x)=\cos^{-1}\Big(\cos\Big(\frac{\pi}{2}-2\theta\Big)\Big)
=\frac{\pi}{2}-2\theta,
\]
provided the angle is in the appropriate range.
Since \( \theta=\tan^{-1}x \), we obtain:
\[
f(x)=\frac{\pi}{2}-2\tan^{-1}x.
\]
Differentiating with respect to \(x\):
\[
f'(x)=-2\cdot\frac{d}{dx}\Big(\tan^{-1}x\Big)
=-\frac{2}{1+x^2}.
\]
Final Answer:
\(\displaystyle f'(x)=-\frac{2}{1+x^2}\)
Question:
13. (iv) \( \sec^{-1}\left(\frac{1}{4x^3-3x}\right) \quad \text{(NCERT Exemplar)} \)
Solution:
To simplify the expression, set
\[
x=\cos \theta.
\]
Then, notice that:
\[
4x^3-3x=4\cos^3\theta-3\cos\theta=\cos3\theta.
\]
Hence,
\[
\frac{1}{4x^3-3x}=\frac{1}{\cos3\theta}=\sec3\theta.
\]
Therefore,
\[
f(x)=\sec^{-1}\left(\frac{1}{4x^3-3x}\right)=\sec^{-1}(\sec3\theta).
\]
For the principal value, we have:
\[
f(x)=3\theta.
\]
Since \(x=\cos\theta\), it follows that:
\[
\theta=\cos^{-1}x.
\]
Thus, the function becomes:
\[
f(x)=3\cos^{-1}x.
\]
Differentiating with respect to \(x\):
\[
f'(x)=3\cdot\frac{d}{dx}\Big(\cos^{-1}x\Big)
=3\left(-\frac{1}{\sqrt{1-x^2}}\right)
=-\frac{3}{\sqrt{1-x^2}}.
\]
Final Answer:
\(\displaystyle f'(x)=-\frac{3}{\sqrt{1-x^2}}\)
Question:
14.(i) \( \sec^{-1}\left(\frac{x^2+1}{x^2-1}\right) \)
Solution:
Let
\[
y=\sec^{-1}\left(\frac{x^2+1}{x^2-1}\right)
\]
and set
\[
u=\frac{x^2+1}{x^2-1}.
\]
Then \( y=\sec^{-1}(u) \) and by the chain rule, the derivative is
\[
y’=\frac{u’}{|u|\sqrt{u^2-1}}.
\]
First, differentiate \( u \) using the quotient rule:
\[
u’=\frac{d}{dx}\left(\frac{x^2+1}{x^2-1}\right)
=\frac{(2x)(x^2-1)- (2x)(x^2+1)}{(x^2-1)^2}
=\frac{-4x}{(x^2-1)^2}.
\]
Next, compute \( u^2-1 \):
\[
u^2-1=\left(\frac{x^2+1}{x^2-1}\right)^2-1
=\frac{(x^2+1)^2-(x^2-1)^2}{(x^2-1)^2}.
\]
Notice that
\[
(x^2+1)^2-(x^2-1)^2= \left[(x^2+1)-(x^2-1)\right]\left[(x^2+1)+(x^2-1)\right]=(2)(2x^2)=4x^2.
\]
Therefore,
\[
u^2-1=\frac{4x^2}{(x^2-1)^2} \quad \text{and} \quad \sqrt{u^2-1}=\frac{2|x|}{|x^2-1|}.
\]
Substituting \( u’ \) and \( \sqrt{u^2-1} \) into the derivative formula:
\[
y’=\frac{-4x}{(x^2-1)^2}\cdot\frac{|x^2-1|^2}{2|x|(x^2+1)}
=-\frac{2x}{|x|(x^2+1)}.
\]
Since \( \frac{x}{|x|}=1 \) for \( x>0 \) (as per the typical domain considerations for \(\sec^{-1}\) functions), we have
\[
y’=-\frac{2}{1+x^2}.
\]
Final Answer:
\( -\frac{2}{1+x^2} \)
Question:
14.(ii) \( \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right) \)
Solution:
Let
\[
y=\sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)
\]
and denote
\[
u=\frac{1-x^2}{1+x^2}.
\]
Then, by the chain rule, we have
\[
y’=\frac{1}{\sqrt{1-u^2}}\, u’.
\]
First, differentiate \( u \) using the quotient rule:
\[
u’=\frac{(1+x^2)\cdot(-2x) – (1-x^2)\cdot(2x)}{(1+x^2)^2}
=\frac{-2x(1+x^2)-2x(1-x^2)}{(1+x^2)^2}.
\]
Notice that
\[
-2x(1+x^2)-2x(1-x^2)=-2x\Big[(1+x^2)+(1-x^2)\Big]
=-2x(2)= -4x.
\]
Hence,
\[
u’=\frac{-4x}{(1+x^2)^2}.
\]
Next, calculate \( 1-u^2 \):
\[
1-u^2=1-\left(\frac{1-x^2}{1+x^2}\right)^2
=\frac{(1+x^2)^2-(1-x^2)^2}{(1+x^2)^2}.
\]
Expanding,
\[
(1+x^2)^2-(1-x^2)^2 = \bigl[1+2x^2+x^4\bigr]-\bigl[1-2x^2+x^4\bigr]=4x^2.
\]
Thus,
\[
1-u^2=\frac{4x^2}{(1+x^2)^2} \quad \text{and} \quad \sqrt{1-u^2}=\frac{2|x|}{1+x^2}.
\]
Substituting \( u’ \) and \( \sqrt{1-u^2} \) into the derivative:
\[
y’=\frac{-4x}{(1+x^2)^2}\cdot\frac{1+x^2}{2|x|}
= -\frac{4x}{2|x|(1+x^2)}
= -\frac{2x}{|x|(1+x^2)}.
\]
For \( x>0 \), we have \( \frac{x}{|x|}=1 \), so the derivative simplifies to:
\[
y’=-\frac{2}{1+x^2}.
\]
Final Answer:
\( -\frac{2}{1+x^2} \)
Question:
14.(iii) \( \tan^{-1}\left(\sqrt{1+x^2}-x\right) \)
Solution:
We start with
\[
y=\tan^{-1}\Bigl(\sqrt{1+x^2}-x\Bigr).
\]
A useful observation is that the expression inside the inverse tangent can be rewritten as
\[
\sqrt{1+x^2}-x=\frac{1}{\sqrt{1+x^2}+x},
\]
since
\[
\left(\sqrt{1+x^2}-x\right)\left(\sqrt{1+x^2}+x\right)=1+x^2-x^2=1.
\]
Hence, we have
\[
y=\tan^{-1}\left(\frac{1}{\sqrt{1+x^2}+x}\right).
\]
It is known that
\[
\tan^{-1}\left(\sqrt{1+x^2}-x\right)=\frac{\pi}{4}-\frac{1}{2}\tan^{-1}x,
\]
which can be verified by employing the substitution \(x=\tan t\). Differentiating this equivalent form with respect to \(x\) yields:
\[
y’=\frac{d}{dx}\left(\frac{\pi}{4}-\frac{1}{2}\tan^{-1}x\right)
= -\frac{1}{2}\cdot\frac{1}{1+x^2}.
\]
Thus, the derivative is
\[
y’=-\frac{1}{2(1+x^2)}.
\]
Final Answer:
\( -\frac{1}{2(1+x^2)} \)
Question:
14.(iv) \( \cot^{-1}\left(\sqrt{1+x^2}+x\right) \)
Solution:
Let
\[
y=\cot^{-1}\left(\sqrt{1+x^2}+x\right).
\]
We know that
\[
\cot^{-1}(u)=\tan^{-1}\left(\frac{1}{u}\right)
\]
for positive \( u \). Notice that
\[
\sqrt{1+x^2}+x \quad \text{and} \quad \sqrt{1+x^2}-x
\]
are reciprocals since
\[
\left(\sqrt{1+x^2}+x\right)\left(\sqrt{1+x^2}-x\right)=1.
\]
Hence, we can write:
\[
y=\cot^{-1}\left(\sqrt{1+x^2}+x\right)
=\tan^{-1}\left(\sqrt{1+x^2}-x\right).
\]
From part 14.(iii), we already have:
\[
\frac{d}{dx}\tan^{-1}\left(\sqrt{1+x^2}-x\right)
= -\frac{1}{2(1+x^2)}.
\]
Therefore, the derivative of \( y \) is:
\[
y’=-\frac{1}{2(1+x^2)}.
\]
Final Answer:
\( -\frac{1}{2(1+x^2)} \)
Question:
15.(i) \( \tan^{-1}\left(\frac{x}{\sqrt{a^2-x^2}}\right) \)
Solution:
Let
\[
y=\tan^{-1}\left(\frac{x}{\sqrt{a^2-x^2}}\right).
\]
Define
\[
u=\frac{x}{\sqrt{a^2-x^2}}.
\]
Then, by the chain rule,
\[
y’=\frac{u’}{1+u^2}.
\]
First, rewrite
\[
u=x(a^2-x^2)^{-1/2}.
\]
Differentiate \( u \) using the product rule:
\[
u’=\frac{d}{dx}\left[x\right](a^2-x^2)^{-1/2}
+x\frac{d}{dx}\left[(a^2-x^2)^{-1/2}\right].
\]
Since \(\frac{d}{dx}x=1\) and
\[
\frac{d}{dx}(a^2-x^2)^{-1/2} = -\frac{1}{2}(a^2-x^2)^{-3/2}(-2x)
= \frac{x}{(a^2-x^2)^{3/2}},
\]
we obtain:
\[
u’=(a^2-x^2)^{-1/2}+ \frac{x^2}{(a^2-x^2)^{3/2}}
=\frac{(a^2-x^2)+x^2}{(a^2-x^2)^{3/2}}
=\frac{a^2}{(a^2-x^2)^{3/2}}.
\]
Next, calculate \( 1+u^2 \):
\[
1+u^2=1+\frac{x^2}{a^2-x^2}=\frac{(a^2-x^2)+x^2}{a^2-x^2}
=\frac{a^2}{a^2-x^2}.
\]
Thus, the derivative is:
\[
y’=\frac{\frac{a^2}{(a^2-x^2)^{3/2}}}{\frac{a^2}{a^2-x^2}}
=\frac{a^2}{(a^2-x^2)^{3/2}}\cdot\frac{a^2-x^2}{a^2}
=\frac{1}{\sqrt{a^2-x^2}}.
\]
Final Answer:
\( \frac{1}{\sqrt{a^2-x^2}} \)
Question:
15.(ii) \( \sin^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right) \)
Solution:
Let
\[
y=\sin^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right).
\]
Set
\[
u=\frac{1}{\sqrt{1+x^2}}=(1+x^2)^{-1/2}.
\]
Then, by the chain rule,
\[
y’=\frac{u’}{\sqrt{1-u^2}}.
\]
First, differentiate \( u \):
\[
u’=-\frac{1}{2}(1+x^2)^{-3/2}\cdot 2x
=-\frac{x}{(1+x^2)^{3/2}}.
\]
Next, compute \( 1-u^2 \):
\[
1-u^2=1-\frac{1}{1+x^2}=\frac{(1+x^2)-1}{1+x^2}
=\frac{x^2}{1+x^2}.
\]
Thus,
\[
\sqrt{1-u^2}=\frac{|x|}{\sqrt{1+x^2}}.
\]
Assuming \( x>0 \) (so that \( |x|=x \)), we get:
\[
\sqrt{1-u^2}=\frac{x}{\sqrt{1+x^2}}.
\]
Therefore, the derivative is:
\[
y’=\frac{-\frac{x}{(1+x^2)^{3/2}}}{\frac{x}{\sqrt{1+x^2}}}
= -\frac{1}{1+x^2}.
\]
Final Answer:
\( -\frac{1}{1+x^2} \)
Question:
15.(iii) \( \cos^{-1}\left(\sqrt{\frac{1+x}{2}}\right) \)
Solution:
Let
\[
y=\cos^{-1}\left(\sqrt{\frac{1+x}{2}}\right)
\]
and set
\[
u=\sqrt{\frac{1+x}{2}}.
\]
Then, \( y=\cos^{-1}(u) \) and by the chain rule,
\[
y’=-\frac{u’}{\sqrt{1-u^2}}.
\]
First, express \( u \) as
\[
u=\left(\frac{1+x}{2}\right)^{\frac{1}{2}}.
\]
Differentiating with respect to \( x \) gives
\[
u’=\frac{1}{2}\left(\frac{1+x}{2}\right)^{-\frac{1}{2}}\cdot\frac{1}{2}
=\frac{1}{4}\left(\frac{2}{1+x}\right)^{\frac{1}{2}}
=\frac{\sqrt{2}}{4\sqrt{1+x}}.
\]
Next, compute \( 1-u^2 \). Since
\[
u^2=\frac{1+x}{2},
\]
we have
\[
1-u^2=1-\frac{1+x}{2}=\frac{1-x}{2}.
\]
Therefore,
\[
\sqrt{1-u^2}=\sqrt{\frac{1-x}{2}}=\frac{\sqrt{1-x}}{\sqrt{2}}.
\]
Substituting these into the derivative formula yields:
\[
y’=-\frac{\frac{\sqrt{2}}{4\sqrt{1+x}}}{\frac{\sqrt{1-x}}{\sqrt{2}}}
= -\frac{\sqrt{2}}{4\sqrt{1+x}}\cdot\frac{\sqrt{2}}{\sqrt{1-x}}
= -\frac{2}{4\sqrt{1+x}\sqrt{1-x}}
= -\frac{1}{2\sqrt{(1+x)(1-x)}}.
\]
Since \(\sqrt{(1+x)(1-x)}=\sqrt{1-x^2}\), we have:
\[
y’=-\frac{1}{2\sqrt{1-x^2}}.
\]
Final Answer:
\( -\frac{1}{2\sqrt{1-x^2}} \)
Question:
15.(iv) \( \sin^{-1}\left(\frac{x}{\sqrt{x^2+a^2}}\right) \)
Solution:
Let
\[
y=\sin^{-1}\left(\frac{x}{\sqrt{x^2+a^2}}\right).
\]
Define
\[
u=\frac{x}{\sqrt{x^2+a^2}}.
\]
Then, by the chain rule,
\[
y’=\frac{u’}{\sqrt{1-u^2}}.
\]
First, express \( u \) as
\[
u=x\,(x^2+a^2)^{-1/2}.
\]
Differentiating using the product rule:
\[
u’=\frac{d}{dx}\left(x\right)(x^2+a^2)^{-1/2}+x\frac{d}{dx}\left((x^2+a^2)^{-1/2}\right).
\]
Since
\[
\frac{d}{dx}x=1,
\]
and
\[
\frac{d}{dx}(x^2+a^2)^{-1/2}=-\frac{1}{2}(x^2+a^2)^{-3/2}\cdot 2x=-\frac{x}{(x^2+a^2)^{3/2}},
\]
we obtain:
\[
u’=(x^2+a^2)^{-1/2}-\frac{x^2}{(x^2+a^2)^{3/2}}
=\frac{(x^2+a^2)-x^2}{(x^2+a^2)^{3/2}}
=\frac{a^2}{(x^2+a^2)^{3/2}}.
\]
Next, compute \( \sqrt{1-u^2} \). Note that:
\[
u^2=\frac{x^2}{x^2+a^2} \quad \Rightarrow \quad 1-u^2=1-\frac{x^2}{x^2+a^2}=\frac{a^2}{x^2+a^2}.
\]
Thus,
\[
\sqrt{1-u^2}=\frac{a}{\sqrt{x^2+a^2}}.
\]
Substituting \( u’ \) and \( \sqrt{1-u^2} \) in the derivative formula:
\[
y’=\frac{\frac{a^2}{(x^2+a^2)^{3/2}}}{\frac{a}{\sqrt{x^2+a^2}}}
=\frac{a^2}{(x^2+a^2)^{3/2}} \cdot \frac{\sqrt{x^2+a^2}}{a}
=\frac{a}{x^2+a^2}.
\]
Final Answer:
\( \frac{a}{x^2+a^2} \)
Question:
15.(v) \( \tan^{-1} \sqrt{\frac{a-x}{a+x}} \)
Solution:
We start with
\[
y=\tan^{-1}\sqrt{\frac{a-x}{a+x}}.
\]
Using the hint, let
\[
x=a\cos t.
\]
Then,
\[
\frac{a-x}{a+x}=\frac{a-a\cos t}{a+a\cos t}=\frac{1-\cos t}{1+\cos t}.
\]
Recall that
\[
\tan^2\left(\frac{t}{2}\right)=\frac{1-\cos t}{1+\cos t},
\]
so that
\[
\sqrt{\frac{1-\cos t}{1+\cos t}}=\tan\left(\frac{t}{2}\right).
\]
Hence, we have
\[
y=\tan^{-1}\left(\tan\left(\frac{t}{2}\right)\right)=\frac{t}{2}.
\]
Since
\[
t=\cos^{-1}\left(\frac{x}{a}\right),
\]
it follows that
\[
y=\frac{1}{2}\cos^{-1}\left(\frac{x}{a}\right).
\]
Differentiating with respect to \( x \):
\[
y’=\frac{1}{2}\cdot\frac{d}{dx}\left[\cos^{-1}\left(\frac{x}{a}\right)\right]
=\frac{1}{2}\cdot\left(-\frac{1}{\sqrt{1-\left(\frac{x}{a}\right)^2}}\cdot\frac{1}{a}\right)
=-\frac{1}{2a\sqrt{1-\frac{x^2}{a^2}}}.
\]
Simplify further using
\[
\sqrt{1-\frac{x^2}{a^2}}=\frac{\sqrt{a^2-x^2}}{a},
\]
so that
\[
y’=-\frac{1}{2a\cdot \frac{\sqrt{a^2-x^2}}{a}}
= -\frac{1}{2\sqrt{a^2-x^2}}.
\]
Final Answer:
\( -\frac{1}{2\sqrt{a^2-x^2}} \)
Question:
16.(i) \( \sin^{-1}\left(\sqrt{\frac{1+x^2}{2}}\right) \)
Solution:
Let
\[
y=\sin^{-1}\left(\sqrt{\frac{1+x^2}{2}}\right).
\]
Define
\[
u=\sqrt{\frac{1+x^2}{2}},
\]
so that \( y=\sin^{-1}(u) \) and by the chain rule:
\[
y’=\frac{u’}{\sqrt{1-u^2}}.
\]
First, express \( u \) as
\[
u=\left(\frac{1+x^2}{2}\right)^{1/2}.
\]
Differentiating with respect to \( x \):
\[
u’=\frac{1}{2}\left(\frac{1+x^2}{2}\right)^{-1/2}\cdot\frac{d}{dx}\left(\frac{1+x^2}{2}\right)
=\frac{1}{2}\left(\frac{1+x^2}{2}\right)^{-1/2}\cdot\frac{2x}{2}
=\frac{x}{2\sqrt{\frac{1+x^2}{2}}}.
\]
Simplify:
\[
u’=\frac{x}{2}\sqrt{\frac{2}{1+x^2}}
=\frac{x}{\sqrt{2(1+x^2)}}.
\]
Next, compute:
\[
u^2=\frac{1+x^2}{2} \quad \Rightarrow \quad 1-u^2=1-\frac{1+x^2}{2}=\frac{1-x^2}{2}.
\]
Thus,
\[
\sqrt{1-u^2}=\sqrt{\frac{1-x^2}{2}}=\frac{\sqrt{1-x^2}}{\sqrt{2}}.
\]
Substituting into the derivative formula:
\[
y’=\frac{\frac{x}{\sqrt{2(1+x^2)}}}{\frac{\sqrt{1-x^2}}{\sqrt{2}}}
=\frac{x}{\sqrt{2(1+x^2)}}\cdot\frac{\sqrt{2}}{\sqrt{1-x^2}}
=\frac{x}{\sqrt{(1+x^2)(1-x^2)}}.
\]
Since
\[
\sqrt{(1+x^2)(1-x^2)}=\sqrt{1-x^4},
\]
we obtain:
\[
y’=\frac{x}{\sqrt{1-x^4}}.
\]
Final Answer:
\( \frac{x}{\sqrt{1-x^4}} \)
Question:
16. (ii) \( \tan^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right) \) (With hint: set \( x=\cos 2t \))
Solution:
Let
\[
f(x)=\tan^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right).
\]
Using the hint, substitute
\[
x=\cos 2t.
\]
Then, we have:
\[
\sqrt{1+x}=\sqrt{1+\cos 2t}=\sqrt{2\cos^2 t}=\sqrt{2}\cos t,
\]
\[
\sqrt{1-x}=\sqrt{1-\cos 2t}=\sqrt{2\sin^2 t}=\sqrt{2}\sin t,
\]
where we assume \( t \) is chosen so that \(\cos t\) and \(\sin t\) are nonnegative.
Therefore, the expression inside the arctan becomes:
\[
\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}
=\frac{\sqrt{2}\cos t-\sqrt{2}\sin t}{\sqrt{2}\cos t+\sqrt{2}\sin t}
=\frac{\cos t-\sin t}{\cos t+\sin t}.
\]
Dividing numerator and denominator by \(\cos t\) (assuming \(\cos t\ne0\)), we get:
\[
\frac{1-\tan t}{1+\tan t}=\tan\left(\frac{\pi}{4}-t\right).
\]
Hence,
\[
f(x)=\tan^{-1}\left(\tan\left(\frac{\pi}{4}-t\right)\right).
\]
Assuming \(\frac{\pi}{4}-t\) lies in the principal branch of \(\tan^{-1}\), we obtain:
\[
f(x)=\frac{\pi}{4}-t.
\]
Now, since \( x=\cos 2t \), we have:
\[
2t=\cos^{-1}x \quad \Longrightarrow \quad t=\frac{1}{2}\cos^{-1}x.
\]
Substituting back, we find:
\[
f(x)=\frac{\pi}{4}-\frac{1}{2}\cos^{-1}x.
\]
Differentiating with respect to \( x \):
\[
f'(x)=-\frac{1}{2}\cdot\frac{d}{dx}\Big(\cos^{-1}x\Big)
=-\frac{1}{2}\left(-\frac{1}{\sqrt{1-x^2}}\right)
=\frac{1}{2\sqrt{1-x^2}}.
\]
Final Answer:
\(\displaystyle f'(x)=\frac{1}{2\sqrt{1-x^2}}\)
Question:
16. (iii) \( \sin^2\left(\cot^{-1}\sqrt{\frac{1+x}{1-x}}\right) \) (With hint: set \( x=\cos 2t \))
Solution:
Let
\[
f(x)=\sin^2\left(\cot^{-1}\sqrt{\frac{1+x}{1-x}}\right).
\]
To simplify, we use the hint by substituting
\[
x=\cos 2t.
\]
First, consider the inner function:
\[
u=\cot^{-1}\sqrt{\frac{1+x}{1-x}}.
\]
Rewriting \( u \) in terms of tangent, note that
\[
\cot^{-1} z=\tan^{-1}\left(\frac{1}{z}\right).
\]
Therefore,
\[
u=\tan^{-1}\left(\frac{1}{\sqrt{\frac{1+x}{1-x}}}\right)
=\tan^{-1}\sqrt{\frac{1-x}{1+x}}.
\]
Now, substitute \( x=\cos 2t \):
\[
\sqrt{1+x}=\sqrt{1+\cos 2t}=\sqrt{2\cos^2t}=\sqrt{2}\cos t,
\]
\[
\sqrt{1-x}=\sqrt{1-\cos 2t}=\sqrt{2\sin^2t}=\sqrt{2}\sin t.
\]
Hence,
\[
\sqrt{\frac{1-x}{1+x}}=\frac{\sqrt{2}\sin t}{\sqrt{2}\cos t}=\tan t.
\]
Thus,
\[
u=\tan^{-1}(\tan t)=t,
\]
where we assume \( t \) is in the principal range of \( \tan^{-1} \).
Now, the original function becomes:
\[
f(x)=\sin^2(u)=\sin^2t.
\]
But from the double-angle identity, note that when \( x=\cos 2t \),
\[
\cos 2t = 1-2\sin^2t \quad \Longrightarrow \quad \sin^2t=\frac{1-x}{2}.
\]
Thus, we have:
\[
f(x)=\frac{1-x}{2}.
\]
Differentiating with respect to \( x \):
\[
f'(x)=\frac{d}{dx}\left(\frac{1-x}{2}\right)
= -\frac{1}{2}.
\]
Final Answer:
\(\displaystyle f'(x)=-\frac{1}{2}\)
Question:
16. (iv) \( \sin^{-1}\left(\frac{2\sec x}{1+\sec^2 x}\right) \) (With hint: Put \( \sec x=\tan t \))
Solution:
Let
\[
f(x)=\sin^{-1}\left(\frac{2\sec x}{1+\sec^2 x}\right).
\]
With the substitution \( \sec x=\tan t \), we obtain:
\[
\frac{2\sec x}{1+\sec^2 x}=\frac{2\tan t}{1+\tan^2 t}=\sin 2t.
\]
Therefore,
\[
f(x)=\sin^{-1}(\sin 2t)=2t,
\]
provided that \(2t\) lies within the principal range of \(\sin^{-1}\).
Since \( t=\tan^{-1}(\sec x) \), it follows that:
\[
f(x)=2\tan^{-1}(\sec x).
\]
Differentiating with respect to \( x \):
\[
f'(x)=2\cdot\frac{d}{dx}\left(\tan^{-1}(\sec x)\right)
=2\cdot\frac{1}{1+(\sec x)^2}\cdot\frac{d}{dx}(\sec x).
\]
As
\[
\frac{d}{dx}(\sec x)=\sec x\tan x,
\]
we get:
\[
f'(x)=\frac{2\sec x\tan x}{1+\sec^2 x}.
\]
Final Answer:
\(\displaystyle f'(x)=\frac{2\sec x\tan x}{1+\sec^2 x}\)
Question:
17. (i) \( \cos^{-1}\left(\frac{\sin x+\cos x}{\sqrt{2}}\right) \)
Solution:
We start with the function
\[
f(x)=\cos^{-1}\left(\frac{\sin x+\cos x}{\sqrt{2}}\right).
\]
Notice that
\[
\frac{\sin x+\cos x}{\sqrt{2}}=\sin\left(x+\frac{\pi}{4}\right),
\]
since
\[
\sin\left(x+\frac{\pi}{4}\right)=\sin x\cos\frac{\pi}{4}+\cos x\sin\frac{\pi}{4}=\frac{\sin x+\cos x}{\sqrt{2}}.
\]
Hence, the function becomes
\[
f(x)=\cos^{-1}\left(\sin\left(x+\frac{\pi}{4}\right)\right).
\]
Using the identity
\[
\sin\theta=\cos\left(\frac{\pi}{2}-\theta\right),
\]
we write
\[
\sin\left(x+\frac{\pi}{4}\right)=\cos\left(\frac{\pi}{2}-x-\frac{\pi}{4}\right)=\cos\left(\frac{\pi}{4}-x\right).
\]
Therefore,
\[
f(x)=\cos^{-1}\left(\cos\left(\frac{\pi}{4}-x\right)\right).
\]
Provided that \(\frac{\pi}{4}-x\) lies within the principal value range of \(\cos^{-1}\), we have
\[
f(x)=\frac{\pi}{4}-x.
\]
Differentiating with respect to \(x\) gives:
\[
f'(x)=-1.
\]
Final Answer:
\(\displaystyle f'(x)=-1\)
Question:
17. (ii) \( \cos^{-1}\left(\frac{3\cos x-4\sin x}{5}\right) \)
Solution:
Let
\[
f(x)=\cos^{-1}\left(\frac{3\cos x-4\sin x}{5}\right).
\]
Notice that the numerator can be written in the form
\[
3\cos x-4\sin x = 5\cos(x+\phi),
\]
where \(\phi\) is a constant angle satisfying
\[
\cos\phi=\frac{3}{5} \quad \text{and} \quad \sin\phi=\frac{4}{5}.
\]
Hence, we have:
\[
\frac{3\cos x-4\sin x}{5}=\cos(x+\phi).
\]
Therefore,
\[
f(x)=\cos^{-1}\left(\cos(x+\phi)\right).
\]
Provided that \(x+\phi\) lies in the principal range \([0,\pi]\) of \(\cos^{-1}\), it follows that
\[
f(x)=x+\phi.
\]
Differentiating with respect to \(x\):
\[
f'(x)=1.
\]
Final Answer:
\(\displaystyle f'(x)=1\)
Question:
17. (iii) \( \sin^{-1}\left(\frac{x+\sqrt{1-x^2}}{\sqrt{2}}\right) \) (NCERT Exemplar)
Solution:
Let
\[
f(x)=\sin^{-1}\left(\frac{x+\sqrt{1-x^2}}{\sqrt{2}}\right).
\]
To simplify the expression inside the inverse sine, substitute
\[
x=\sin\theta,
\]
so that
\[
\sqrt{1-x^2}=\sqrt{1-\sin^2\theta}=\cos\theta \quad (\text{assuming } \theta\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]).
\]
Then, the expression becomes:
\[
\frac{x+\sqrt{1-x^2}}{\sqrt{2}}=\frac{\sin\theta+\cos\theta}{\sqrt{2}}.
\]
Recognize that:
\[
\sin\theta+\cos\theta=\sqrt{2}\sin\left(\theta+\frac{\pi}{4}\right).
\]
Thus,
\[
\frac{\sin\theta+\cos\theta}{\sqrt{2}}=\sin\left(\theta+\frac{\pi}{4}\right).
\]
Hence, we have:
\[
f(x)=\sin^{-1}\left(\sin\left(\theta+\frac{\pi}{4}\right)\right).
\]
Provided that the angle \(\theta+\frac{\pi}{4}\) lies within the principal value range of \(\sin^{-1}\), we obtain:
\[
f(x)=\theta+\frac{\pi}{4}.
\]
Since \( \theta=\sin^{-1}x \), it follows that:
\[
f(x)=\sin^{-1}x+\frac{\pi}{4}.
\]
Differentiating with respect to \( x \):
\[
f'(x)=\frac{d}{dx}\left(\sin^{-1}x+\frac{\pi}{4}\right)
=\frac{1}{\sqrt{1-x^2}}.
\]
Final Answer:
\(\displaystyle f'(x)=\frac{1}{\sqrt{1-x^2}}\)
Question:
17. (iv) \( \cos^{-1}\left(\frac{3x+4\sqrt{1-x^2}}{5}\right) \)
Solution:
Let
\[
f(x)=\cos^{-1}\left(\frac{3x+4\sqrt{1-x^2}}{5}\right).
\]
Substitute \( x=\cos\theta \) so that
\[
\sqrt{1-x^2}=\sqrt{1-\cos^2\theta}=\sin\theta.
\]
Then the expression inside the inverse cosine becomes:
\[
\frac{3\cos\theta+4\sin\theta}{5}.
\]
Recognize that this can be written in the form:
\[
5\cos(\theta-\phi)=5\cos\theta\cos\phi+5\sin\theta\sin\phi,
\]
where we choose \(\phi\) such that
\[
\cos\phi=\frac{3}{5} \quad \text{and} \quad \sin\phi=\frac{4}{5}.
\]
Thus,
\[
3\cos\theta+4\sin\theta=5\cos(\theta-\phi),
\]
and so
\[
\frac{3x+4\sqrt{1-x^2}}{5}=\cos(\theta-\phi).
\]
Therefore, the function becomes:
\[
f(x)=\cos^{-1}\left(\cos(\theta-\phi)\right).
\]
Assuming \(\theta-\phi\) lies in the principal range of \(\cos^{-1}\), we have:
\[
f(x)=\theta-\phi.
\]
Since \( \theta=\cos^{-1}x \) and \(\phi=\cos^{-1}(3/5)\) (a constant), we can write:
\[
f(x)=\cos^{-1}x-\cos^{-1}\left(\frac{3}{5}\right).
\]
Differentiating with respect to \( x \):
\[
f'(x)=\frac{d}{dx}\Big(\cos^{-1}x\Big)= -\frac{1}{\sqrt{1-x^2}},
\]
because the derivative of the constant term is zero.
Final Answer:
\(\displaystyle f'(x)=-\frac{1}{\sqrt{1-x^2}}\)
Question:
18. (i) \( \sin^{-1}\left(\frac{6x-4\sqrt{1-4x^2}}{5}\right) \)
Solution:
Let
\[
f(x)=\sin^{-1}\left(\frac{6x-4\sqrt{1-4x^2}}{5}\right).
\]
Observe that the expression inside the inverse sine can be rewritten using a sine difference identity. Define
\[
u(x)=\frac{6x-4\sqrt{1-4x^2}}{5}.
\]
We aim to express \(u(x)\) in the form:
\[
\sin\left(A-B\right)=\sin A\cos B-\cos A\sin B.
\]
Let
\[
A=\sin^{-1}(2x) \quad \text{and} \quad B=\sin^{-1}\left(\frac{4}{5}\right).
\]
Then,
\[
\sin A=2x,\quad \cos A=\sqrt{1-4x^2},
\]
and
\[
\sin B=\frac{4}{5},\quad \cos B=\frac{3}{5}.
\]
Using the sine difference formula:
\[
\sin\left(A-B\right)=\sin A\cos B-\cos A\sin B
=2x\cdot\frac{3}{5}-\sqrt{1-4x^2}\cdot\frac{4}{5}
=\frac{6x-4\sqrt{1-4x^2}}{5}.
\]
Hence, we can write:
\[
u(x)=\sin\left(\sin^{-1}(2x)-\sin^{-1}\left(\frac{4}{5}\right)\right).
\]
Taking the inverse sine on both sides (and noting that the inverse sine of a sine returns the angle within the principal branch), we have:
\[
f(x)=\sin^{-1}\big(u(x)\big)
=\sin^{-1}(2x)-\sin^{-1}\left(\frac{4}{5}\right).
\]
Since \(\sin^{-1}\left(\frac{4}{5}\right)\) is a constant, when differentiating \(f(x)\) with respect to \(x\) we obtain:
\[
f'(x)=\frac{d}{dx}\Big(\sin^{-1}(2x)\Big)
=\frac{2}{\sqrt{1-(2x)^2}}
=\frac{2}{\sqrt{1-4x^2}}.
\]
Final Answer:
\(\displaystyle f'(x)=\frac{2}{\sqrt{1-4x^2}}\)
Question:
18. (ii) \( \tan^{-1}\left(x^{1/3}\right) \)
Solution:
Let
\[
f(x)=\tan^{-1}\left(x^{1/3}\right).
\]
Set
\[
u(x)=x^{1/3}.
\]
Then, by the chain rule:
\[
f'(x)=\frac{u'(x)}{1+u(x)^2}.
\]
First, differentiate \( u(x)=x^{1/3} \):
\[
u'(x)=\frac{1}{3}x^{-2/3}.
\]
Also, note that:
\[
u(x)^2=x^{2/3}.
\]
Therefore,
\[
f'(x)=\frac{\frac{1}{3}x^{-2/3}}{1+x^{2/3}}
=\frac{1}{3x^{2/3}(1+x^{2/3})}.
\]
Final Answer:
\(\displaystyle f'(x)=\frac{1}{3x^{2/3}(1+x^{2/3})}\)
Question:
18. (iii) \( \sin\left(2\sin^{-1} x\right) \)
Solution:
First, recognize that the expression can be simplified using a well-known trigonometric identity.
Recall that:
\[
\sin\left(2\sin^{-1} x\right)=2x\sqrt{1-x^2}.
\]
Let
\[
f(x)=2x\sqrt{1-x^2}.
\]
To differentiate \(f(x)\), we use the product rule. Define:
\[
u(x)=2x \quad \text{and} \quad v(x)=\sqrt{1-x^2}.
\]
Then,
\[
f'(x)=u'(x)v(x)+u(x)v'(x).
\]
First, compute:
\[
u'(x)=2.
\]
Next, write \(v(x)=(1-x^2)^{1/2}\) and differentiate using the chain rule:
\[
v'(x)=\frac{1}{2}(1-x^2)^{-1/2}\cdot(-2x)=-\frac{x}{\sqrt{1-x^2}}.
\]
Now, substitute back:
\[
f'(x)=2\sqrt{1-x^2}+2x\left(-\frac{x}{\sqrt{1-x^2}}\right)
=2\sqrt{1-x^2}-\frac{2x^2}{\sqrt{1-x^2}}.
\]
Combine the terms over a common denominator:
\[
f'(x)=\frac{2(1-x^2)-2x^2}{\sqrt{1-x^2}}
=\frac{2(1-2x^2)}{\sqrt{1-x^2}}.
\]
Final Answer:
\(\displaystyle f'(x)=\frac{2(1-2x^2)}{\sqrt{1-x^2}}\)
Question 18(iv):
Differentiate
\[
y = \cot^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)
\]
with respect to \( x \).
Solution:
First, simplify the expression inside the inverse cotangent. Define:
\[
A = \sqrt{1+\sin x} \quad \text{and} \quad B = \sqrt{1-\sin x}.
\]
Using the half-angle identities, we have:
\[
\sqrt{1+\sin x} = \sin\frac{x}{2}+\cos\frac{x}{2} \quad \text{and} \quad \sqrt{1-\sin x} = \cos\frac{x}{2}-\sin\frac{x}{2}.
\]
Therefore,
\[
A+B = (\sin\frac{x}{2}+\cos\frac{x}{2})+(\cos\frac{x}{2}-\sin\frac{x}{2}) = 2\cos\frac{x}{2},
\]
and
\[
A-B = (\sin\frac{x}{2}+\cos\frac{x}{2})-(\cos\frac{x}{2}-\sin\frac{x}{2}) = 2\sin\frac{x}{2}.
\]
Hence, the given expression simplifies to:
\[
\frac{A+B}{A-B} = \frac{2\cos\frac{x}{2}}{2\sin\frac{x}{2}} = \cot\frac{x}{2}.
\]
This implies:
\[
y = \cot^{-1}\left(\cot\frac{x}{2}\right).
\]
Assuming \(\frac{x}{2}\) lies within the principal range of \(\cot^{-1}\), we obtain:
\[
y = \frac{x}{2}.
\]
Differentiating with respect to \( x \):
\[
\frac{dy}{dx} = \frac{1}{2}.
\]
Final Answer:
\[
\frac{d}{dx}\left[\cot^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)\right] = \frac{1}{2}.
\]