Here is the complete ML Aggarwal Class 12 Solutions of Exercise – 5.5 for Chapter 5 – Continuity and Differentiability. Each question is solved step by step for better understanding.
Question:
1. (i) Differentiate \( 5 \tan x – 3 \sin x + 4 x^{\frac{3}{2}} \).
Solution:
We differentiate each term individually:
\[
\frac{d}{dx}(5 \tan x)=5\sec^2x,
\]
\[
\frac{d}{dx}(-3\sin x)=-3\cos x,
\]
\[
\frac{d}{dx}(4x^{\frac{3}{2}})=4\cdot\frac{3}{2}x^{\frac{1}{2}}=6\sqrt{x}.
\]
Combining these results, the derivative is:
\[
f'(x)=5\sec^2x-3\cos x+6\sqrt{x}.
\]
Final Answer:
\[
f'(x)=5\sec^2x-3\cos x+6\sqrt{x}.
\]
Question: 1. (ii) Differentiate \( 3 \cot x + 6(1-2x)^{\frac{5}{3}} \).
Solution: We differentiate term-by-term.
For \( 3\cot x \):
\[
\frac{d}{dx}(3\cot x) = 3 \left(-\csc^2 x\right) = -3\csc^2 x.
\]
For \( 6(1-2x)^{\frac{5}{3}} \):
\[
\frac{d}{dx}\left[6(1-2x)^{\frac{5}{3}}\right] = 6 \cdot \frac{5}{3}(1-2x)^{\frac{2}{3}} \cdot (-2) = -20(1-2x)^{\frac{2}{3}}.
\]
Combining these results, the derivative is:
\[
f'(x) = -3\csc^2 x – 20(1-2x)^{\frac{2}{3}}.
\]
Final Answer: \[ f'(x) = -3\csc^2 x – 20(1-2x)^{\frac{2}{3}}. \]
Question:
2. (i) Differentiate \( x^3 \sin x \).
Solution:
Using the product rule, where if \( f(x) = u(x)v(x) \) then \( f'(x)=u'(x)v(x)+u(x)v'(x) \), we set:
\[
u(x)=x^3,\quad v(x)=\sin x.
\]
Then,
\[
u'(x)=3x^2,\quad v'(x)=\cos x.
\]
Thus,
\[
\frac{d}{dx}(x^3 \sin x)=3x^2\sin x + x^3\cos x.
\]
Final Answer:
\[
\frac{d}{dx}(x^3 \sin x)=3x^2\sin x + x^3\cos x.
\]
Question:
2. (ii) Differentiate \( (1+x^2) \cos x \).
Solution:
We apply the product rule, where if \( f(x)=u(x)v(x) \), then
\[
f'(x)=u'(x)v(x)+u(x)v'(x).
\]
Here, let:
\[
u(x)=1+x^2,\quad v(x)=\cos x.
\]
We have:
\[
u'(x)=2x,\quad v'(x)=-\sin x.
\]
Therefore, the derivative is:
\[
\frac{d}{dx}\left[(1+x^2)\cos x\right]=2x\cos x – (1+x^2)\sin x.
\]
Final Answer:
\[
\frac{d}{dx}\left[(1+x^2)\cos x\right]=2x\cos x – (1+x^2)\sin x.
\]
Question:
3. (i) Differentiate \( x^3 \csc x \).
Solution:
We use the product rule where for \( f(x) = u(x)v(x) \),
\[
f'(x)=u'(x)v(x)+u(x)v'(x).
\]
Let:
\[
u(x)=x^3 \quad \text{and} \quad v(x)=\csc x.
\]
Then,
\[
u'(x)=3x^2 \quad \text{and} \quad v'(x)=-\csc x\cot x.
\]
Thus, the derivative is:
\[
\frac{d}{dx}(x^3 \csc x)=3x^2\csc x – x^3\csc x\cot x.
\]
Final Answer:
\[
\frac{d}{dx}(x^3 \csc x)=3x^2\csc x – x^3\csc x\cot x.
\]
Question:
3. (ii) Differentiate \( (1-2\tan x)(5+4\sin x) \).
Solution:
Let
\[
u(x)=1-2\tan x \quad \text{and} \quad v(x)=5+4\sin x.
\]
First, we differentiate each function:
\[
u'(x)=-2\sec^2 x, \quad \text{and} \quad v'(x)=4\cos x.
\]
Applying the product rule:
\[
\frac{d}{dx}[u(x)v(x)] = u'(x)v(x) + u(x)v'(x),
\]
we have:
\[
\frac{d}{dx}\left[(1-2\tan x)(5+4\sin x)\right] = -2\sec^2 x\,(5+4\sin x) + (1-2\tan x)(4\cos x).
\]
Final Answer:
\[
\frac{d}{dx}\left[(1-2\tan x)(5+4\sin x)\right] = -2\sec^2 x\,(5+4\sin x) + 4\cos x\,(1-2\tan x).
\]
Question:
4. (i) Differentiate \(\frac{x+\sin x}{x+\cos x}\).
Solution:
Let
\[
u(x)=x+\sin x \quad \text{and} \quad v(x)=x+\cos x.
\]
Then,
\[
u'(x)=1+\cos x \quad \text{and} \quad v'(x)=1-\sin x.
\]
Using the quotient rule,
\[
\frac{d}{dx}\left(\frac{u(x)}{v(x)}\right)=\frac{u'(x)v(x)-u(x)v'(x)}{[v(x)]^2},
\]
we have:
\[
\frac{d}{dx}\left(\frac{x+\sin x}{x+\cos x}\right)=\frac{(1+\cos x)(x+\cos x)-(x+\sin x)(1-\sin x)}{(x+\cos x)^2}.
\]
Expanding the numerator:
\[
(1+\cos x)(x+\cos x)= x+ x\cos x + \cos x+\cos^2 x,
\]
\[
(x+\sin x)(1-\sin x)= x – x\sin x + \sin x-\sin^2 x.
\]
Thus, the numerator becomes:
\[
\Bigl[x+ x\cos x + \cos x+\cos^2 x\Bigr]-\Bigl[x – x\sin x + \sin x-\sin^2 x\Bigr],
\]
which simplifies to:
\[
x\cos x + x\sin x + (\cos x-\sin x) + (\cos^2 x+\sin^2 x).
\]
Since \(\cos^2 x+\sin^2 x=1\), the numerator is:
\[
x(\cos x+\sin x)+(\cos x-\sin x)+1.
\]
Therefore, the derivative is:
\[
\frac{d}{dx}\left(\frac{x+\sin x}{x+\cos x}\right)=\frac{x(\cos x+\sin x)+(\cos x-\sin x)+1}{(x+\cos x)^2}.
\]
Final Answer:
\[
\frac{d}{dx}\left(\frac{x+\sin x}{x+\cos x}\right)=\frac{x(\cos x+\sin x)+(\cos x-\sin x)+1}{(x+\cos x)^2}.
\]
Question:
4. (ii) Differentiate \( \frac{\sin x+\cos x}{\sin x-\cos x} \).
Solution:
Let
\[
u(x)=\sin x+\cos x \quad \text{and} \quad v(x)=\sin x-\cos x.
\]
Then, we have:
\[
u'(x)=\cos x-\sin x \quad \text{and} \quad v'(x)=\cos x+\sin x.
\]
Using the quotient rule,
\[
\frac{d}{dx}\left(\frac{u(x)}{v(x)}\right)=\frac{u'(x)v(x)-u(x)v'(x)}{[v(x)]^2},
\]
we compute the numerator:
\[
u'(x)v(x)=(\cos x-\sin x)(\sin x-\cos x)=-\left(\cos x-\sin x\right)^2,
\]
\[
u(x)v'(x)=(\sin x+\cos x)(\cos x+\sin x)=(\sin x+\cos x)^2.
\]
Thus, the numerator becomes:
\[
-\left(\cos x-\sin x\right)^2-(\sin x+\cos x)^2.
\]
Note that:
\[
(\cos x-\sin x)^2=\cos^2 x-2\sin x\cos x+\sin^2 x=1-2\sin x\cos x,
\]
\[
(\sin x+\cos x)^2=\sin^2 x+2\sin x\cos x+\cos^2 x=1+2\sin x\cos x.
\]
Therefore, the numerator simplifies to:
\[
-\left[1-2\sin x\cos x\right]-\left[1+2\sin x\cos x\right]=-1+2\sin x\cos x-1-2\sin x\cos x=-2.
\]
Hence, the derivative is:
\[
\frac{d}{dx}\left(\frac{\sin x+\cos x}{\sin x-\cos x}\right)=\frac{-2}{(\sin x-\cos x)^2}.
\]
Final Answer:
\[
\frac{d}{dx}\left(\frac{\sin x+\cos x}{\sin x-\cos x}\right)=\frac{-2}{(\sin x-\cos x)^2}.
\]
Question:
5. (i) Differentiate \( \frac{\sec x-1}{\sec x+1} \).
Solution:
Let
\[
u(x)=\sec x-1 \quad \text{and} \quad v(x)=\sec x+1.
\]
We compute the derivatives:
\[
u'(x)=\sec x\tan x, \quad v'(x)=\sec x\tan x.
\]
Using the quotient rule,
\[
\frac{d}{dx}\left(\frac{u(x)}{v(x)}\right)=\frac{u'(x)v(x)-u(x)v'(x)}{[v(x)]^2},
\]
we substitute:
\[
\frac{d}{dx}\left(\frac{\sec x-1}{\sec x+1}\right)=\frac{\sec x\tan x (\sec x+1)-(\sec x-1)\sec x\tan x}{(\sec x+1)^2}.
\]
Factor out \(\sec x\tan x\):
\[
=\frac{\sec x\tan x\left[(\sec x+1)-(\sec x-1)\right]}{(\sec x+1)^2}.
\]
Simplifying the bracket:
\[
(\sec x+1)-(\sec x-1)=2,
\]
so the derivative becomes:
\[
\frac{d}{dx}\left(\frac{\sec x-1}{\sec x+1}\right)=\frac{2\sec x\tan x}{(\sec x+1)^2}.
\]
Final Answer:
\[
\frac{d}{dx}\left(\frac{\sec x-1}{\sec x+1}\right)=\frac{2\sec x\tan x}{(\sec x+1)^2}.
\]
Question:
5. (ii) Differentiate \( \frac{a+\sin x}{1+a\sin x} \).
Solution:
Let
\[
u(x)=a+\sin x \quad \text{and} \quad v(x)=1+a\sin x.
\]
Then, the derivatives are:
\[
u'(x)=\cos x,\quad v'(x)=a\cos x.
\]
Using the quotient rule,
\[
\frac{d}{dx}\left(\frac{u(x)}{v(x)}\right)=\frac{u'(x)v(x)-u(x)v'(x)}{[v(x)]^2},
\]
we have:
\[
\frac{d}{dx}\left(\frac{a+\sin x}{1+a\sin x}\right)=\frac{\cos x(1+a\sin x)- (a+\sin x)(a\cos x)}{(1+a\sin x)^2}.
\]
Factor \(\cos x\) in the numerator:
\[
=\frac{\cos x\left[(1+a\sin x)-a(a+\sin x)\right]}{(1+a\sin x)^2}.
\]
Simplify inside the bracket:
\[
(1+a\sin x)-a(a+\sin x)=1+a\sin x-a^2-a\sin x=1-a^2.
\]
Thus, the derivative becomes:
\[
\frac{d}{dx}\left(\frac{a+\sin x}{1+a\sin x}\right)=\frac{(1-a^2)\cos x}{(1+a\sin x)^2}.
\]
Final Answer:
\[
\frac{d}{dx}\left(\frac{a+\sin x}{1+a\sin x}\right)=\frac{(1-a^2)\cos x}{(1+a\sin x)^2}.
\]
Question:
6. (i) Differentiate \( \frac{x \sin x}{1+\cos x} \).
Solution:
Let
\[
u(x) = x \sin x \quad \text{and} \quad v(x) = 1 + \cos x.
\]
Now, differentiate both \( u(x) \) and \( v(x) \):
\[
u'(x) = \sin x + x \cos x, \quad v'(x) = -\sin x.
\]
Using the quotient rule:
\[
\frac{d}{dx}\left( \frac{u(x)}{v(x)} \right) = \frac{u'(x)v(x) – u(x)v'(x)}{[v(x)]^2},
\]
Substituting the values:
\[
= \frac{(\sin x + x \cos x)(1 + \cos x) – (x \sin x)(-\sin x)}{(1 + \cos x)^2}.
\]
Simplify the expression:
\[
= \frac{(\sin x + x \cos x)(1 + \cos x) + x \sin^2 x}{(1 + \cos x)^2}.
\]
Final Answer:
\[
\frac{d}{dx}\left( \frac{x \sin x}{1+\cos x} \right) = \frac{(\sin x + x \cos x)(1 + \cos x) + x \sin^2 x}{(1 + \cos x)^2}.
\]
Question:
6. (ii) Differentiate \( \frac{\sin x – x \cos x}{x \sin x + \cos x} \).
Solution:
Let
\[
u(x) = \sin x – x \cos x, \quad v(x) = x \sin x + \cos x.
\]
First, compute the derivatives:
\[
u'(x) = \cos x – (\cos x – x \sin x) = x \sin x,
\]
(Using product rule for \( x \cos x \):
\( \frac{d}{dx}(x \cos x) = \cos x – x \sin x \))
\[
v'(x) = \sin x + x \cos x – \sin x = x \cos x.
\]
(Using product rule for \( x \sin x \):
\( \frac{d}{dx}(x \sin x) = \sin x + x \cos x \))
Now apply the quotient rule:
\[
\frac{d}{dx}\left(\frac{u(x)}{v(x)}\right) = \frac{u'(x)v(x) – u(x)v'(x)}{[v(x)]^2}.
\]
Substituting the values:
\[
= \frac{(x \sin x)(x \sin x + \cos x) – (\sin x – x \cos x)(x \cos x)}{(x \sin x + \cos x)^2}.
\]
Final Answer:
\[
\frac{d}{dx}\left(\frac{\sin x – x \cos x}{x \sin x + \cos x}\right) = \frac{(x \sin x)(x \sin x + \cos x) – (\sin x – x \cos x)(x \cos x)}{(x \sin x + \cos x)^2}.
\]
Question:
7. (i) Differentiate \( \sqrt{ \frac{1 + \cos x}{1 – \cos x} } \)
Solution:
Let
\[
y = \sqrt{ \frac{1 + \cos x}{1 – \cos x} }
\]
Rewrite the square root in exponent form:
\[
y = \left( \frac{1 + \cos x}{1 – \cos x} \right)^{1/2}
\]
Let
\[
u = \frac{1 + \cos x}{1 – \cos x}, \quad \text{then} \quad y = u^{1/2}
\]
Using chain rule:
\[
\frac{dy}{dx} = \frac{1}{2} u^{-1/2} \cdot \frac{du}{dx}
\]
Now, differentiate \( u \) using the quotient rule.
Let
\[
f(x) = 1 + \cos x, \quad f'(x) = -\sin x
\]
\[
g(x) = 1 – \cos x, \quad g'(x) = \sin x
\]
Now apply the quotient rule:
\[
\frac{du}{dx} = \frac{f'(x)g(x) – f(x)g'(x)}{[g(x)]^2}
\]
Substituting:
\[
\frac{du}{dx} = \frac{(-\sin x)(1 – \cos x) – (1 + \cos x)(\sin x)}{(1 – \cos x)^2}
\]
Simplify the numerator:
\[
= -\sin x (1 – \cos x) – \sin x (1 + \cos x)
\]
\[
= -\sin x + \sin x \cos x – \sin x – \sin x \cos x
\]
\[
= -2 \sin x
\]
So,
\[
\frac{du}{dx} = \frac{-2 \sin x}{(1 – \cos x)^2}
\]
Now plug back into the chain rule:
\[
\frac{dy}{dx} = \frac{1}{2} \cdot \left( \frac{1 + \cos x}{1 – \cos x} \right)^{-1/2} \cdot \frac{-2 \sin x}{(1 – \cos x)^2}
\]
Cancel out 2:
\[
\frac{dy}{dx} = \frac{ – \sin x }{ (1 – \cos x)^2 \cdot \sqrt{ \frac{1 + \cos x}{1 – \cos x} } }
\]
Convert the square root:
\[
\sqrt{ \frac{1 + \cos x}{1 – \cos x} } = \frac{ \sqrt{1 + \cos x} }{ \sqrt{1 – \cos x} }
\]
So:
\[
\frac{dy}{dx} = \frac{ -\sin x \cdot \sqrt{1 – \cos x} }{ (1 – \cos x)^2 \cdot \sqrt{1 + \cos x} }
\]
Combine powers:
\[
\frac{dy}{dx} = \frac{ -\sin x }{ (1 – \cos x)^{3/2} (1 + \cos x)^{1/2} }
\]
Final Answer:
\[
\frac{d}{dx} \left( \sqrt{ \frac{1 + \cos x}{1 – \cos x} } \right) = \frac{ -\sin x }{ (1 – \cos x)^{3/2} (1 + \cos x)^{1/2} }
\]
Question:
7. (ii) Differentiate \( \sqrt{ \frac{ \sec x + \tan x }{ \sec x – \tan x } } \)
Solution:
Let
\[
y = \sqrt{ \frac{ \sec x + \tan x }{ \sec x – \tan x } }
\]
Rewrite the square root in exponent form:
\[
y = \left( \frac{ \sec x + \tan x }{ \sec x – \tan x } \right)^{1/2}
\]
Let
\[
u = \frac{ \sec x + \tan x }{ \sec x – \tan x }, \quad \text{then} \quad y = u^{1/2}
\]
Using chain rule:
\[
\frac{dy}{dx} = \frac{1}{2} u^{-1/2} \cdot \frac{du}{dx}
\]
Now, differentiate \( u \) using the quotient rule.
Let
\[
f(x) = \sec x + \tan x, \quad f'(x) = \sec x \tan x + \sec^2 x
\]
\[
g(x) = \sec x – \tan x, \quad g'(x) = \sec x \tan x – \sec^2 x
\]
Now apply the quotient rule:
\[
\frac{du}{dx} = \frac{f'(x)g(x) – f(x)g'(x)}{[g(x)]^2}
\]
Substituting everything:
\[
\frac{du}{dx} = \frac{(\sec x \tan x + \sec^2 x)(\sec x – \tan x) – (\sec x + \tan x)(\sec x \tan x – \sec^2 x)}{(\sec x – \tan x)^2}
\]
Let’s simplify both terms in the numerator:
**First term:**
\[
(\sec x \tan x + \sec^2 x)(\sec x – \tan x)
\]
Distribute:
\[
= \sec^2 x \cdot \sec x – \sec^2 x \cdot \tan x + \sec x \tan x \cdot \sec x – \sec x \tan x \cdot \tan x
\]
\[
= \sec^3 x – \sec^2 x \tan x + \sec^2 x \tan x – \sec x \tan^2 x
\]
\[
= \sec^3 x – \sec x \tan^2 x
\]
**Second term:**
\[
(\sec x + \tan x)(\sec x \tan x – \sec^2 x)
\]
Distribute:
\[
= \sec x \cdot \sec x \tan x – \sec x \cdot \sec^2 x + \tan x \cdot \sec x \tan x – \tan x \cdot \sec^2 x
\]
\[
= \sec^2 x \tan x – \sec^3 x + \sec x \tan^2 x – \sec^2 x \tan x
\]
\[
= -\sec^3 x + \sec x \tan^2 x
\]
Now subtract second term from first term:
\[
\left( \sec^3 x – \sec x \tan^2 x \right) – \left( -\sec^3 x + \sec x \tan^2 x \right)
\]
\[
= \sec^3 x – \sec x \tan^2 x + \sec^3 x – \sec x \tan^2 x
\]
\[
= 2\sec^3 x – 2\sec x \tan^2 x
\]
So,
\[
\frac{du}{dx} = \frac{2\sec^3 x – 2\sec x \tan^2 x}{(\sec x – \tan x)^2}
\]
Factor out \( 2\sec x \):
\[
\frac{du}{dx} = \frac{2\sec x (\sec^2 x – \tan^2 x)}{(\sec x – \tan x)^2}
\]
Using identity:
\[
\sec^2 x – \tan^2 x = 1
\]
So,
\[
\frac{du}{dx} = \frac{2\sec x}{(\sec x – \tan x)^2}
\]
Now plug back into the derivative of \( y \):
\[
\frac{dy}{dx} = \frac{1}{2} \cdot \left( \frac{ \sec x + \tan x }{ \sec x – \tan x } \right)^{-1/2} \cdot \frac{2\sec x}{(\sec x – \tan x)^2}
\]
Cancel out 2:
\[
\frac{dy}{dx} = \frac{ \sec x }{ (\sec x – \tan x)^2 \cdot \sqrt{ \frac{ \sec x + \tan x }{ \sec x – \tan x } } }
\]
Convert the square root:
\[
\sqrt{ \frac{ \sec x + \tan x }{ \sec x – \tan x } } = \frac{ \sqrt{ \sec x + \tan x } }{ \sqrt{ \sec x – \tan x } }
\]
Final expression:
\[
\frac{dy}{dx} = \frac{ \sec x \cdot \sqrt{ \sec x – \tan x } }{ (\sec x – \tan x)^2 \cdot \sqrt{ \sec x + \tan x } }
\]
Simplify:
\[
\frac{dy}{dx} = \frac{ \sec x }{ (\sec x – \tan x)^{3/2} (\sec x + \tan x)^{1/2} }
\]
Multiply numerator and denominator by \( \sqrt{\sec x + \tan x} \) to simplify:
\[
\frac{dy}{dx} = (\sec x + \tan x) \sec x
\]
Final Answer:
\( \frac{d}{dx} \left( \sqrt{ \frac{ \sec x + \tan x }{ \sec x – \tan x } } \right) = (\sec x + \tan x)\sec x \)
Question:
8. If \( y = \frac{2 – 3 \cos x}{\sin x} \), find \( \frac{dy}{dx} \) at \( x = \frac{\pi}{4} \).
Solution:
Given:
\[
y = \frac{2 – 3 \cos x}{\sin x}
\]
To find \( \frac{dy}{dx} \), we will use the **quotient rule**:
Let
\[
u = 2 – 3 \cos x \quad \text{and} \quad v = \sin x
\]
Then
\[
u’ = 3 \sin x, \quad v’ = \cos x
\]
Using the quotient rule:
\[
\frac{dy}{dx} = \frac{u’v – uv’}{v^2}
= \frac{(3 \sin x)(\sin x) – (2 – 3 \cos x)(\cos x)}{\sin^2 x}
\]
Simplify the numerator:
\[
3 \sin^2 x – (2 \cos x – 3 \cos^2 x)
= 3 \sin^2 x – 2 \cos x + 3 \cos^2 x
\]
So,
\[
\frac{dy}{dx} = \frac{3 \sin^2 x + 3 \cos^2 x – 2 \cos x}{\sin^2 x}
\]
Since \( \sin^2 x + \cos^2 x = 1 \), we can write:
\[
3 \sin^2 x + 3 \cos^2 x = 3
\]
Therefore,
\[
\frac{dy}{dx} = \frac{3 – 2 \cos x}{\sin^2 x}
\]
Now, evaluate at \( x = \frac{\pi}{4} \):
\[
\cos\left( \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}}, \quad
\sin\left( \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}} \Rightarrow \sin^2\left( \frac{\pi}{4} \right) = \frac{1}{2}
\]
Plug in the values:
\[
\frac{dy}{dx}\bigg|_{x = \frac{\pi}{4}} = \frac{3 – 2 \cdot \frac{1}{\sqrt{2}}}{\frac{1}{2}}
= 2 \cdot \left( 3 – \frac{2}{\sqrt{2}} \right)
= 2 \cdot \left( 3 – \sqrt{2} \right)
= 6 – 2\sqrt{2}
\]
Final Answer:
\( \frac{dy}{dx}\bigg|_{x = \frac{\pi}{4}} = 6 – 2\sqrt{2} \)
Question:
9. If \( y = \left( \sin \frac{x}{2} + \cos \frac{x}{2} \right)^2 \), find \( \frac{dy}{dx} \) at \( x = \frac{\pi}{6} \).
Solution:
Given:
\[
y = \left( \sin \frac{x}{2} + \cos \frac{x}{2} \right)^2
\]
Using the identity:
\[
\left( \sin \frac{x}{2} + \cos \frac{x}{2} \right)^2
= \sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} + 2 \sin \frac{x}{2} \cos \frac{x}{2}
= 1 + \sin x
\]
(Since \( 2 \sin \frac{x}{2} \cos \frac{x}{2} = \sin x \))
So,
\[
y = 1 + \sin x
\Rightarrow \frac{dy}{dx} = \cos x
\]
Now, evaluate at \( x = \frac{\pi}{6} \):
\[
\cos \left( \frac{\pi}{6} \right) = \frac{\sqrt{3}}{2}
\]
Final Answer:
\( \frac{dy}{dx}\bigg|_{x = \frac{\pi}{6}} = \frac{\sqrt{3}}{2} \)
